Abstract

An expression for the complex amplitude of a fractional Bessel beam [J. Opt. Soc. Am. A 21, 1192 (2004) ] is not a proper solution of the Helmholtz equation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Tao and X. Yuan, “Self-reconstruction property of fractional Bessel beams,” J. Opt. Soc. Am. A 21, 1192-1197 (2004).
    [CrossRef]
  2. S. H. Tao, W. M. Lee, and X. Yuan, “Experimental study of holographic generation of fractional Bessel beams,” Appl. Opt. 43, 122-126 (2004).
    [CrossRef] [PubMed]
  3. S. H. Tao, W. M. Lee, and X.-C. Yuan, “Dynamic optical manipulation with a higher-order fractional Bessel beam generated from a spatial light modulator,” Opt. Lett. 28, 1867-1869 (2003).
    [CrossRef] [PubMed]
  4. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6, 259-268 (2004).
    [CrossRef]
  5. P. L. Marston, “Scattering of a Bessel beam by a sphere,” J. Acoust. Soc. Am. 121, 753-758 (2007).
    [CrossRef] [PubMed]
  6. P. L. Marston, “Scattering of a Bessel beam by a sphere: II. helicoidal case and spherical shell example,” J. Acoust. Soc. Am. 124, 2905-2910 (2008).
    [CrossRef] [PubMed]
  7. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651-654 (1987).
    [CrossRef]

2008 (1)

P. L. Marston, “Scattering of a Bessel beam by a sphere: II. helicoidal case and spherical shell example,” J. Acoust. Soc. Am. 124, 2905-2910 (2008).
[CrossRef] [PubMed]

2007 (1)

P. L. Marston, “Scattering of a Bessel beam by a sphere,” J. Acoust. Soc. Am. 121, 753-758 (2007).
[CrossRef] [PubMed]

2004 (3)

2003 (1)

1987 (1)

Berry, M. V.

M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6, 259-268 (2004).
[CrossRef]

Durnin, J.

Lee, W. M.

Marston, P. L.

P. L. Marston, “Scattering of a Bessel beam by a sphere: II. helicoidal case and spherical shell example,” J. Acoust. Soc. Am. 124, 2905-2910 (2008).
[CrossRef] [PubMed]

P. L. Marston, “Scattering of a Bessel beam by a sphere,” J. Acoust. Soc. Am. 121, 753-758 (2007).
[CrossRef] [PubMed]

Tao, S. H.

Yuan, X.

Yuan, X.-C.

Appl. Opt. (1)

J. Acoust. Soc. Am. (2)

P. L. Marston, “Scattering of a Bessel beam by a sphere,” J. Acoust. Soc. Am. 121, 753-758 (2007).
[CrossRef] [PubMed]

P. L. Marston, “Scattering of a Bessel beam by a sphere: II. helicoidal case and spherical shell example,” J. Acoust. Soc. Am. 124, 2905-2910 (2008).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6, 259-268 (2004).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E n ( r , ϕ , z ) = A exp ( i k z z ) J n ( k r r ) exp ( i n ϕ ) ,
E n p ( r , ϕ , z , t ) = Re [ E n ( r , ϕ , z ) exp ( i ω t ) ] ,

Metrics