Abstract

One of the primary challenges in all small satellite design is the attainment of adequate sensing and communication capabilities within the stringent spatial limitations. These can be defined in terms of surface area expenditure for the different payloads. There is an inevitable trade-off between enhancing the sensing capacity at the expense of reducing communication capabilities on the one hand and, on the other hand, increasing the communication capacity to the detriment of the sensing ability. Careful balancing of the conflicting demands is necessary to achieve acceptable performance levels. In this paper we study two intersatellite optical wireless communication scenarios: (i) a direct link between two satellites and (ii) a folded path link between a master satellite and a picosatellite equipped with a modulatable retroreflector. In the latter case the picosatellite does not have a laser transmitter and the data carrier is the retroreflected beam from the master satellite. The data rate, which is bounded by the sensing payload resolution, is derived using diffraction theory and Shannon capacity considerations. We develop a mathematical model to describe the interrelations between sensing and communication facilities in a picosatellite flight formation using optical technologies and demonstrate system performance trade-offs with a numerical example.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sekiguchi, Y. Tanaka, I. Kojima, N. Yamamato, S. Yokoyama, Y. Tanimura, R. Nakamura, K. Iwao, and S. Tsuchida, “Design principles and IT overviews of the GEO Grid,” IEEE Systems Journal 2, 374-389 (2008).
    [CrossRef]
  2. Y. Yamaguchi, A. B. Kahle, H. Tsu, T. Kawakami, and M. Pniel, “Overview of advanced spaceborne thermal emisión and reflection radiometer (ASTER),” IEEE Trans. Geosci. Remote Sens. 36, 1062-1071 (1998).
    [CrossRef]
  3. L. Wolf and M. Williams, “GEONETCast--delivering environmental data to users worldwide (September 2007),” IEEE Systems Journal 2, 401-405 (2008).
    [CrossRef]
  4. A. Granz and Y. Gao, “SS/TDMA scheduling for satellite clusters,” IEEE Trans. Commun. 40, 597-603 (1992).
    [CrossRef]
  5. T. A. Gronland, P. Rangsten, M. Nese, and M. Lang, “Miniaturization of components and systems for space using MEMS-technology,” Acta Astron. 61, 228-233 (2007).
    [CrossRef]
  6. R. Burns, C. A. McLaughlin, J. Leitner, and M. Martin, “TechSat 21: formation design, control, and simulation,” Proceedings of IEEE Aerospace Conference (Cat. No.00TH8484) 2000 (IEEE, 2000), pp. 19-25.
  7. H. Heidt, J. Puig-Suari, A. S. Moore, S. Nakasuka, and R. J. Twiggs, “CubeSat: a new generation of picosatellite for education and industry low-cost space experimentation,” 14th Annual/Proceedings of the Utah State University Small Satellite Conference, Logan, Utah, August 22, 2000.
  8. L. Tan, Y. Yang, J. Ma, and J. Yu, “Pointing and tracking errors due to localized deformation in inter-satellite laser communication links,” Opt. Express 16, 13372-13380 (2008).
    [CrossRef] [PubMed]
  9. T. To1ker-Nie1sen and G. Oppenhaeuser, “In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1-15 (2002).
    [CrossRef]
  10. W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
    [CrossRef]
  11. S. Arnon, “Network of sensors: acquisition probability,” J. Opt. Soc. Am. A 24, 2758-2765 (2007).
    [CrossRef]
  12. A. Yariv, Optical Electronics in Modern Communications (Oxford Univ. Press, 1997).

2008 (3)

S. Sekiguchi, Y. Tanaka, I. Kojima, N. Yamamato, S. Yokoyama, Y. Tanimura, R. Nakamura, K. Iwao, and S. Tsuchida, “Design principles and IT overviews of the GEO Grid,” IEEE Systems Journal 2, 374-389 (2008).
[CrossRef]

L. Wolf and M. Williams, “GEONETCast--delivering environmental data to users worldwide (September 2007),” IEEE Systems Journal 2, 401-405 (2008).
[CrossRef]

L. Tan, Y. Yang, J. Ma, and J. Yu, “Pointing and tracking errors due to localized deformation in inter-satellite laser communication links,” Opt. Express 16, 13372-13380 (2008).
[CrossRef] [PubMed]

2007 (2)

T. A. Gronland, P. Rangsten, M. Nese, and M. Lang, “Miniaturization of components and systems for space using MEMS-technology,” Acta Astron. 61, 228-233 (2007).
[CrossRef]

S. Arnon, “Network of sensors: acquisition probability,” J. Opt. Soc. Am. A 24, 2758-2765 (2007).
[CrossRef]

2005 (1)

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
[CrossRef]

2002 (1)

T. To1ker-Nie1sen and G. Oppenhaeuser, “In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1-15 (2002).
[CrossRef]

1998 (1)

Y. Yamaguchi, A. B. Kahle, H. Tsu, T. Kawakami, and M. Pniel, “Overview of advanced spaceborne thermal emisión and reflection radiometer (ASTER),” IEEE Trans. Geosci. Remote Sens. 36, 1062-1071 (1998).
[CrossRef]

1992 (1)

A. Granz and Y. Gao, “SS/TDMA scheduling for satellite clusters,” IEEE Trans. Commun. 40, 597-603 (1992).
[CrossRef]

Arnon, S.

Burns, R.

R. Burns, C. A. McLaughlin, J. Leitner, and M. Martin, “TechSat 21: formation design, control, and simulation,” Proceedings of IEEE Aerospace Conference (Cat. No.00TH8484) 2000 (IEEE, 2000), pp. 19-25.

Burris, H. R.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
[CrossRef]

Gao, Y.

A. Granz and Y. Gao, “SS/TDMA scheduling for satellite clusters,” IEEE Trans. Commun. 40, 597-603 (1992).
[CrossRef]

Gilbreath, G. C.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
[CrossRef]

Goetz, P. G.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
[CrossRef]

Granz, A.

A. Granz and Y. Gao, “SS/TDMA scheduling for satellite clusters,” IEEE Trans. Commun. 40, 597-603 (1992).
[CrossRef]

Gronland, T. A.

T. A. Gronland, P. Rangsten, M. Nese, and M. Lang, “Miniaturization of components and systems for space using MEMS-technology,” Acta Astron. 61, 228-233 (2007).
[CrossRef]

Heidt, H.

H. Heidt, J. Puig-Suari, A. S. Moore, S. Nakasuka, and R. J. Twiggs, “CubeSat: a new generation of picosatellite for education and industry low-cost space experimentation,” 14th Annual/Proceedings of the Utah State University Small Satellite Conference, Logan, Utah, August 22, 2000.

Iwao, K.

S. Sekiguchi, Y. Tanaka, I. Kojima, N. Yamamato, S. Yokoyama, Y. Tanimura, R. Nakamura, K. Iwao, and S. Tsuchida, “Design principles and IT overviews of the GEO Grid,” IEEE Systems Journal 2, 374-389 (2008).
[CrossRef]

Kahle, A. B.

Y. Yamaguchi, A. B. Kahle, H. Tsu, T. Kawakami, and M. Pniel, “Overview of advanced spaceborne thermal emisión and reflection radiometer (ASTER),” IEEE Trans. Geosci. Remote Sens. 36, 1062-1071 (1998).
[CrossRef]

Kawakami, T.

Y. Yamaguchi, A. B. Kahle, H. Tsu, T. Kawakami, and M. Pniel, “Overview of advanced spaceborne thermal emisión and reflection radiometer (ASTER),” IEEE Trans. Geosci. Remote Sens. 36, 1062-1071 (1998).
[CrossRef]

Kojima, I.

S. Sekiguchi, Y. Tanaka, I. Kojima, N. Yamamato, S. Yokoyama, Y. Tanimura, R. Nakamura, K. Iwao, and S. Tsuchida, “Design principles and IT overviews of the GEO Grid,” IEEE Systems Journal 2, 374-389 (2008).
[CrossRef]

Koplow, J.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
[CrossRef]

Lang, M.

T. A. Gronland, P. Rangsten, M. Nese, and M. Lang, “Miniaturization of components and systems for space using MEMS-technology,” Acta Astron. 61, 228-233 (2007).
[CrossRef]

Leitner, J.

R. Burns, C. A. McLaughlin, J. Leitner, and M. Martin, “TechSat 21: formation design, control, and simulation,” Proceedings of IEEE Aerospace Conference (Cat. No.00TH8484) 2000 (IEEE, 2000), pp. 19-25.

Ma, J.

Mahon, R.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
[CrossRef]

Martin, M.

R. Burns, C. A. McLaughlin, J. Leitner, and M. Martin, “TechSat 21: formation design, control, and simulation,” Proceedings of IEEE Aerospace Conference (Cat. No.00TH8484) 2000 (IEEE, 2000), pp. 19-25.

McLaughlin, C. A.

R. Burns, C. A. McLaughlin, J. Leitner, and M. Martin, “TechSat 21: formation design, control, and simulation,” Proceedings of IEEE Aerospace Conference (Cat. No.00TH8484) 2000 (IEEE, 2000), pp. 19-25.

Moore, A. S.

H. Heidt, J. Puig-Suari, A. S. Moore, S. Nakasuka, and R. J. Twiggs, “CubeSat: a new generation of picosatellite for education and industry low-cost space experimentation,” 14th Annual/Proceedings of the Utah State University Small Satellite Conference, Logan, Utah, August 22, 2000.

Moore, C. I.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
[CrossRef]

Nakamura, R.

S. Sekiguchi, Y. Tanaka, I. Kojima, N. Yamamato, S. Yokoyama, Y. Tanimura, R. Nakamura, K. Iwao, and S. Tsuchida, “Design principles and IT overviews of the GEO Grid,” IEEE Systems Journal 2, 374-389 (2008).
[CrossRef]

Nakasuka, S.

H. Heidt, J. Puig-Suari, A. S. Moore, S. Nakasuka, and R. J. Twiggs, “CubeSat: a new generation of picosatellite for education and industry low-cost space experimentation,” 14th Annual/Proceedings of the Utah State University Small Satellite Conference, Logan, Utah, August 22, 2000.

Nese, M.

T. A. Gronland, P. Rangsten, M. Nese, and M. Lang, “Miniaturization of components and systems for space using MEMS-technology,” Acta Astron. 61, 228-233 (2007).
[CrossRef]

Oh, E.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
[CrossRef]

Oppenhaeuser, G.

T. To1ker-Nie1sen and G. Oppenhaeuser, “In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1-15 (2002).
[CrossRef]

Pniel, M.

Y. Yamaguchi, A. B. Kahle, H. Tsu, T. Kawakami, and M. Pniel, “Overview of advanced spaceborne thermal emisión and reflection radiometer (ASTER),” IEEE Trans. Geosci. Remote Sens. 36, 1062-1071 (1998).
[CrossRef]

Puig-Suari, J.

H. Heidt, J. Puig-Suari, A. S. Moore, S. Nakasuka, and R. J. Twiggs, “CubeSat: a new generation of picosatellite for education and industry low-cost space experimentation,” 14th Annual/Proceedings of the Utah State University Small Satellite Conference, Logan, Utah, August 22, 2000.

Rabinovich, W. S.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
[CrossRef]

Rangsten, P.

T. A. Gronland, P. Rangsten, M. Nese, and M. Lang, “Miniaturization of components and systems for space using MEMS-technology,” Acta Astron. 61, 228-233 (2007).
[CrossRef]

Sekiguchi, S.

S. Sekiguchi, Y. Tanaka, I. Kojima, N. Yamamato, S. Yokoyama, Y. Tanimura, R. Nakamura, K. Iwao, and S. Tsuchida, “Design principles and IT overviews of the GEO Grid,” IEEE Systems Journal 2, 374-389 (2008).
[CrossRef]

Stell, M. F.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
[CrossRef]

Suite, M. R.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
[CrossRef]

Swingen, L.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
[CrossRef]

Tan, L.

Tanaka, Y.

S. Sekiguchi, Y. Tanaka, I. Kojima, N. Yamamato, S. Yokoyama, Y. Tanimura, R. Nakamura, K. Iwao, and S. Tsuchida, “Design principles and IT overviews of the GEO Grid,” IEEE Systems Journal 2, 374-389 (2008).
[CrossRef]

Tanimura, Y.

S. Sekiguchi, Y. Tanaka, I. Kojima, N. Yamamato, S. Yokoyama, Y. Tanimura, R. Nakamura, K. Iwao, and S. Tsuchida, “Design principles and IT overviews of the GEO Grid,” IEEE Systems Journal 2, 374-389 (2008).
[CrossRef]

To1ker-Nie1sen, T.

T. To1ker-Nie1sen and G. Oppenhaeuser, “In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1-15 (2002).
[CrossRef]

Tsu, H.

Y. Yamaguchi, A. B. Kahle, H. Tsu, T. Kawakami, and M. Pniel, “Overview of advanced spaceborne thermal emisión and reflection radiometer (ASTER),” IEEE Trans. Geosci. Remote Sens. 36, 1062-1071 (1998).
[CrossRef]

Tsuchida, S.

S. Sekiguchi, Y. Tanaka, I. Kojima, N. Yamamato, S. Yokoyama, Y. Tanimura, R. Nakamura, K. Iwao, and S. Tsuchida, “Design principles and IT overviews of the GEO Grid,” IEEE Systems Journal 2, 374-389 (2008).
[CrossRef]

Twiggs, R. J.

H. Heidt, J. Puig-Suari, A. S. Moore, S. Nakasuka, and R. J. Twiggs, “CubeSat: a new generation of picosatellite for education and industry low-cost space experimentation,” 14th Annual/Proceedings of the Utah State University Small Satellite Conference, Logan, Utah, August 22, 2000.

Vilcheck, M. J.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
[CrossRef]

Williams, M.

L. Wolf and M. Williams, “GEONETCast--delivering environmental data to users worldwide (September 2007),” IEEE Systems Journal 2, 401-405 (2008).
[CrossRef]

Witkowsky, J. L.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
[CrossRef]

Wolf, L.

L. Wolf and M. Williams, “GEONETCast--delivering environmental data to users worldwide (September 2007),” IEEE Systems Journal 2, 401-405 (2008).
[CrossRef]

Yamaguchi, Y.

Y. Yamaguchi, A. B. Kahle, H. Tsu, T. Kawakami, and M. Pniel, “Overview of advanced spaceborne thermal emisión and reflection radiometer (ASTER),” IEEE Trans. Geosci. Remote Sens. 36, 1062-1071 (1998).
[CrossRef]

Yamamato, N.

S. Sekiguchi, Y. Tanaka, I. Kojima, N. Yamamato, S. Yokoyama, Y. Tanimura, R. Nakamura, K. Iwao, and S. Tsuchida, “Design principles and IT overviews of the GEO Grid,” IEEE Systems Journal 2, 374-389 (2008).
[CrossRef]

Yang, Y.

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications (Oxford Univ. Press, 1997).

Yokoyama, S.

S. Sekiguchi, Y. Tanaka, I. Kojima, N. Yamamato, S. Yokoyama, Y. Tanimura, R. Nakamura, K. Iwao, and S. Tsuchida, “Design principles and IT overviews of the GEO Grid,” IEEE Systems Journal 2, 374-389 (2008).
[CrossRef]

Yu, J.

Acta Astron. (1)

T. A. Gronland, P. Rangsten, M. Nese, and M. Lang, “Miniaturization of components and systems for space using MEMS-technology,” Acta Astron. 61, 228-233 (2007).
[CrossRef]

IEEE Systems Journal (2)

S. Sekiguchi, Y. Tanaka, I. Kojima, N. Yamamato, S. Yokoyama, Y. Tanimura, R. Nakamura, K. Iwao, and S. Tsuchida, “Design principles and IT overviews of the GEO Grid,” IEEE Systems Journal 2, 374-389 (2008).
[CrossRef]

L. Wolf and M. Williams, “GEONETCast--delivering environmental data to users worldwide (September 2007),” IEEE Systems Journal 2, 401-405 (2008).
[CrossRef]

IEEE Trans. Commun. (1)

A. Granz and Y. Gao, “SS/TDMA scheduling for satellite clusters,” IEEE Trans. Commun. 40, 597-603 (1992).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

Y. Yamaguchi, A. B. Kahle, H. Tsu, T. Kawakami, and M. Pniel, “Overview of advanced spaceborne thermal emisión and reflection radiometer (ASTER),” IEEE Trans. Geosci. Remote Sens. 36, 1062-1071 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 55, 056001 (2005).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

T. To1ker-Nie1sen and G. Oppenhaeuser, “In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1-15 (2002).
[CrossRef]

Other (3)

A. Yariv, Optical Electronics in Modern Communications (Oxford Univ. Press, 1997).

R. Burns, C. A. McLaughlin, J. Leitner, and M. Martin, “TechSat 21: formation design, control, and simulation,” Proceedings of IEEE Aerospace Conference (Cat. No.00TH8484) 2000 (IEEE, 2000), pp. 19-25.

H. Heidt, J. Puig-Suari, A. S. Moore, S. Nakasuka, and R. J. Twiggs, “CubeSat: a new generation of picosatellite for education and industry low-cost space experimentation,” 14th Annual/Proceedings of the Utah State University Small Satellite Conference, Logan, Utah, August 22, 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Satellite flight formation in a star architecture with a central hub satellite and several small peripheral picosatellites.

Fig. 2
Fig. 2

Graph showing the relative size of the communication and sensing payloads ( D comm D and D sens D ) for optimal performance of a picosatellite-to-hub link as a function of the intersatellite range Z; transmitted power (a) 5 mW , (b) 10 mW , (c) 50 mW .

Fig. 3
Fig. 3

Graph showing the relative size of the communication and sensing payloads ( D comm D and D sens D ) for optimal performance of a folded path hub-to-picosatellite-to-hub link as a function of the intersatellite range Z; transmitted power (a) 0.05 W , (b) 0.1 W , (c) 0.5 W .

Fig. 4
Fig. 4

Graph showing the relative capacity of an intersatellite link as a function of the relative size of the sensing payload D sens D . The corresponding normalized communication capacity is shown by the dashed curve. When D sens D = 0 the entire available surface area is available for communication—but there will be no data to communicate. When D sens D = 1 the entire available surface area is available for sensing—but there will be no ability to communicate the sensed data.

Tables (1)

Tables Icon

Table 1 Parameters Used for Numerical Calculation

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

D sens 2 + D comm 2 = D 2 ,
Δ l = 1.22 f λ Φ ,
R data = k 1 ( D sens λ ) 2 .
k 1 = ( FOV 1.22 ) 2 F R Q ,
P r hub = η T η R A rec π Z 2 ( tan 2 ( λ 2 π D comm ) ) P t pico ,
P r hub = k 2 D comm 2 ,
k 2 = 4 π η T η R A rec P t pico Z 2 λ 2 .
I hub = R P r hub ,
SNR = ( R k 2 D comm 2 ) 2 N 0 B ,
C = B log 2 ( 1 + S N ) ,
k 1 ( D 2 D comm 2 λ 2 ) = B log 2 ( 1 + ( R k 2 D comm 2 ) 2 N 0 B ) .
lim B = B log 2 ( 1 + S N 0 B ) 1.44 S N 0
k 1 ( D 2 D comm 2 λ 2 ) = 1.44 ( R 2 k 2 2 D comm 4 N 0 ) .
1.44 ( R 2 k 2 2 N 0 ) D comm 4 + k 1 λ 2 D comm 2 k 1 λ 2 D 2 = 0 ,
P r hub = η T η R D comm 2 A rec π 2 ( tan 2 ( θ 0 2 ) ) ( tan 2 ( λ 2 π D comm ) ) ( 1 Z 4 ) P t hub ,
P r hub = k 3 D comm 4 ,
k 3 = 4 η T η R A rec P t hub Z 4 λ 2 ( tan 2 ( θ 0 2 ) ) .
k 1 ( D 2 D comm 2 λ 2 ) = B log 2 ( 1 + ( R k 3 D comm 4 ) 2 N 0 B ) ,
k 1 ( D 2 D comm 2 λ 2 ) = 1.44 ( R 2 k 3 2 D comm 8 N 0 ) .
D comm 8 + k 1 N 0 1.44 R 2 k 3 2 λ 2 D comm 2 k 1 N 0 D 2 1.44 R 2 k 3 2 λ 2 = 0 ,
    α = 0 , P = a 4 , U = R 3 ,
β = a 3 , Q = a 3 2 8 , z = U + a 4 3 U ,
γ = a 4 , R = a 3 2 16 ± a 3 4 256 a 4 3 27 , W = 2 z ,
y ̆ = 1 2 ( W ± ( 2 z + 2 a 3 W ) ) , 1 2 ( W ± ( 2 z 2 a 3 W ) ) .

Metrics