Abstract

Neither Eq. (6.52) of Jackson [Classical Electrodynamics, 3rd ed. (Wiley, 1999)] nor Hannay’s derivation of that equation in the preceding Comment [J. Opt. Soc. Am. A 26, 2107 (2009) ] is applicable to a source whose distribution pattern moves faster than light in vacuo with nonzero acceleration. It is assumed in Hannay’s derivation that the retarded distribution of the density of any moving source will be smooth and differentiable if its rest-frame distribution is. By working out an explicit example of a rotating superluminal source with a bounded and smooth density profile, we show that this assumption is erroneous. The retarded distribution of a rotating source with a moderate superluminal speed is, in general, spread over three disjoint volumes (differing in shape from one another and from the volume occupied by the source in its rest frame) whose boundaries depend on the space–time position of the observer. Hannay overlooks the fact that the limits of integration in his expression for the retarded potential are not differentiable, as functions of the coordinates of the observer, when the distribution pattern of the source moves faster than light. These limits, which delineate the boundaries of the retarded distribution of the source, have divergent gradients at those points on the source boundary that approach the observer, along the radiation direction, with the speed of light at the retarded time. In the superluminal regime, derivatives of the integral representing the retarded potential are well defined only as generalized functions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription