Abstract

Two-dimensional deconvolution methods are proposed to deblur optical coherence tomography images. One employs a two-dimensional deconvolution with a matrix given by the product of the longitudinal and transversal point-spread functions as its kernel, which can be taken as the general point-spread function of an optical coherence tomography system. The other uses two one-dimensional deconvolutions with the longitudinal and transversal point-spread functions successively. It is shown that the two deconvolution methods can deblur the experimentally obtained optical coherence tomography images effectively.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
    [CrossRef]
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  4. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28, 182-184 (2003).
    [CrossRef] [PubMed]
  5. Y. Zhang, M. Sato, and N. Tanno, “Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes,” Opt. Lett. 26, 205-207 (2001).
    [CrossRef]
  6. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  7. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography,” Electron. Lett. 33, 1365-1367 (1997).
    [CrossRef]
  8. T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transversal blurring in optical coherence tomography,” IEEE Trans. Image Process. 14, 1254-1264 (2005).
    [CrossRef] [PubMed]
  9. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027-1037 (2006).
    [CrossRef]
  10. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2002).
  11. X. Liu, M. J. Cobb, and X. Li, “Rapid scanning all-reflective optical delay line for real-time optical coherence tomography,” Opt. Lett. 29, 80-82 (2004).
    [CrossRef] [PubMed]
  12. Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
    [CrossRef]

2007 (1)

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
[CrossRef]

2006 (1)

2005 (1)

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transversal blurring in optical coherence tomography,” IEEE Trans. Image Process. 14, 1254-1264 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28, 182-184 (2003).
[CrossRef] [PubMed]

2001 (1)

1999 (2)

1997 (1)

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography,” Electron. Lett. 33, 1365-1367 (1997).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Boppart, S. A.

Carney, P. S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

Cobb, M. J.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Fujimoto, J. G.

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2002).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Izatt, J. A.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography,” Electron. Lett. 33, 1365-1367 (1997).
[CrossRef]

Kamalabadi, F.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transversal blurring in optical coherence tomography,” IEEE Trans. Image Process. 14, 1254-1264 (2005).
[CrossRef] [PubMed]

Kartner, F. X.

Kulkarni, M. D.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography,” Electron. Lett. 33, 1365-1367 (1997).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Li, X.

Li, X. D.

Liang, Y.

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Liu, X.

Liu, Y.

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
[CrossRef]

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027-1037 (2006).
[CrossRef]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transversal blurring in optical coherence tomography,” IEEE Trans. Image Process. 14, 1254-1264 (2005).
[CrossRef] [PubMed]

Morgner, U.

Mu, G.

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
[CrossRef]

Nelson, J. S.

Pitris, C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027-1037 (2006).
[CrossRef]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transversal blurring in optical coherence tomography,” IEEE Trans. Image Process. 14, 1254-1264 (2005).
[CrossRef] [PubMed]

Sato, M.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tanno, N.

Thomas, C. W.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography,” Electron. Lett. 33, 1365-1367 (1997).
[CrossRef]

Tlotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tong, Z.

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
[CrossRef]

Wang, Y.

Windeler, R. S.

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2002).

Zhang, Y.

Zhao, Y.

Zhu, X.

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
[CrossRef]

Electron. Lett. (1)

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography,” Electron. Lett. 33, 1365-1367 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

IEEE Trans. Image Process. (1)

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transversal blurring in optical coherence tomography,” IEEE Trans. Image Process. 14, 1254-1264 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
[CrossRef]

Opt. Lett. (4)

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (1)

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a fiber-based OCT system.

Fig. 2
Fig. 2

(a) Measured power spectral density and (b) derived corresponding coherence function of the light source.

Fig. 3
Fig. 3

Two-dimensional PSF of the given OCT system.

Fig. 4
Fig. 4

Degraded and deconvolved OCT images of an air–glass interface. (a) Degraded. Deconvolved using (b) a two-dimensional kernel by the Wiener algorithm, (c) a two-dimensional kernel by the Lucy–Richardson algorithm, (d) two one-dimensional kernels by the Wiener algorithm, and (e) two one-dimensional kernels by the Lucy–Richardson algorithm.

Fig. 5
Fig. 5

Degraded and deconvolved OCT images of the orange sample. (a) Degraded. Deconvolved using (b) a two-dimensional kernel by the Wiener algorithm, (c) a two-dimensional kernel by the Lucy–Richardson algorithm, (d) two one-dimensional kernels by the Wiener algorithm, and (e) two one-dimensional kernels by the Lucy–Richardson algorithm. (f)–(j) Five enlarged images of the sample in the rectangular boxes of (a)–(e) for close display of the performance of the deconvolution algorithms: (f) degraded, (g) a two-dimensional kernel by the Wiener algorithm, (h) a two-dimensional kernel by the Lucy–Richardson algorithm, (i) two one-dimensional kernels by the Wiener algorithm, and (j) two one-dimensional kernels by the Lucy–Richardson algorithm.

Tables (2)

Tables Icon

Table 1 Image Sharpness Parameters (K values) Defined by Eq. (13) of the Degraded [Fig. 4(a)] and Deconvolved [Figs. 4(b)–4(e)] OCT Images of the Air–Glass Interface

Tables Icon

Table 2 Contrast of the Degraded [Fig. 4(a)] and Deconvolved [Figs. 4(b)–4(e)] OCT Images of the Air–Glass Interface

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I ( τ ) = 2 Re { Γ ( τ ) f ( τ ) }
S ( λ ) = 2 ( ln 2 π ) 1 2 λ 0 2 c Δ λ exp [ 4 ln 2 ( 1 λ 1 λ 0 ) 2 ( λ 0 2 Δ λ ) 2 ] ,
Γ ( τ ) = exp [ ( π c Δ λ τ 2 ln 2 λ 0 2 ) 2 ] exp [ i ( 2 π c τ λ 0 ) ] ,
l c = 4 ln 2 π λ 0 2 Δ λ .
A ( r , z ) = A 0 exp ( r 2 w 2 ( z ) ) ,
A ( r ) = A 0 exp ( r 2 w 0 2 ) ,
w 0 = 2 π λ 0 f D ,
g ( x , y ) = f ( x , y ) h ( x , y ) .
G ( u , v ) = F ( u , v ) H ( u , v ) ,
F ( u , v ) = G ( u , v ) H ( u , v ) .
F ( u , v ) = [ 1 H ( u , v ) H ( u , v ) 2 H ( u , v ) 2 + S η ( u , v ) S f ( u , v ) ] G ( u , v ) ,
f m + 1 ( x , y ) = f m ( x , y ) [ h ( x , y ) g ( x , y ) h ( x , y ) f m ( x , y ) ] ,
K = g peak g side ,
C = μ o μ b ,
f n + 1 ( i , j ) = f n ( i , j ) k l h ( k i + 1 , l j + 1 ) g ( k , l ) p q h ( k p + 1 , l q + 1 ) f n ( p , q ) .

Metrics