Abstract

A novel method of optical diffraction tomography (ODT) to image weakly scattering, electrically large, two-dimensional (2D) objects using the far-zone scattered field data is presented. The proposed technique is based on the expansion of the target object function in terms of Fourier–Bessel basis functions and an alternative approximation for the total electric field within the support of the investigated scatterer. Analytical (Mie) plane-wave scattering by a layered, circularly symmetric, lossy cylinder, and finite-difference time-domain simulations involving plane-wave scattering by a more general, lossless phantom are utilized to compare the performance of the proposed method with that of the standard ODT techniques, which are based on the Born approximation and the Fourier diffraction theorem. Quantitative and qualitative superiority of the presented method is demonstrated. The proposed 2D technique can be readily extended to more realistic three-dimensional cases. With proper (cylindrical–spherical) receiver configuration, the proposed method can be used without being confined to far-zone observations.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Experimental examination of the quantitative imaging properties of optical diffraction tomography

Torolf C. Wedberg and Jakob J. Stamnes
J. Opt. Soc. Am. A 12(3) 493-500 (1995)

Validity of diffraction tomography based on the first Born and the first Rytov approximations

Bingquan Chen and Jakob J. Stamnes
Appl. Opt. 37(14) 2996-3006 (1998)

Image reconstructions in diffraction tomography from limited transmitted field data sets

Bingquan Chen, Jakob J. Stamnes, and Knut Stamnes
Appl. Opt. 39(17) 2904-2911 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (59)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription