Abstract

We studied changes in the color appearance of a chromatic stimulus as it underwent simultaneous contrast with a more luminous surround. Three normal trichromats provided color-naming descriptions for a 10cdm2 monochromatic field while a broadband white annulus surround ranged in luminance from 0.2cdm2to200cdm2. Descriptions of the chromatic field included Red, Green, Blue, Yellow, White, and Black or their combinations. The naming frequencies for each color/surround were used to calculate measures of similarity among the stimuli. Multidimensional scaling analysis of these subjective similarities resulted in a four-dimensional color space with two chromatic axes, red–green and blue–yellow, and two achromatic axes, revealing separate qualities of blackness/lightness and saturation. Contrast-induced darkening of the chromatic field was found to be accompanied by shifts in both hue and saturation. Hue shifts were similar to the Bezold–Brücke shift; shifts in saturation were also quantified. A stage model is proposed to account for the relationships among blackness induction and the inherent nonlinearities in chromatic and achromatic processing.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541-559 (1931).
    [CrossRef]
  2. D. M. Purdy, “The Bezold-Brücke phenomenon and contours of constant hue,” Am. J. Psychol. 49, 313-315 (1937).
    [CrossRef]
  3. S. Coren and B. Keith, “Bezold-Brücke effect: Pigment or neural location?” J. Opt. Soc. Am. 60, 559-562 (1970).
    [CrossRef] [PubMed]
  4. K. Fuld and T. A. Otto, “Colors of monochromatic lights that vary in contrast-induced brightness,” J. Opt. Soc. Am. A 2, 76-83 (1985).
    [CrossRef] [PubMed]
  5. D. M. Purdy, “On the saturations and chromatic thresholds of the spectral colours,” Br. J. Psychol. 21, 282-313 (1931).
  6. A. Valberg, B. Lange-Malecki, and T. Seim, “Colour changes as a function of luminance,” Perception 20, 655-668 (1991).
    [CrossRef] [PubMed]
  7. D. L. Bimler and G. V. Paramei, “Bezold-Brücke effect in normal trichromats and protanopes,” J. Opt. Soc. Am. A 22, 2120-2136 (2005).
    [CrossRef]
  8. J. Gordon and I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146-152 (1988).
    [CrossRef]
  9. K. Fuld, “The contribution of chromatic and achromatic valence to spectral saturation,” Vision Res. 31, 237-246 (1991).
    [CrossRef] [PubMed]
  10. R. M. Boynton and J. Gordon, “Bezold-Brücke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78-86 (1965).
    [CrossRef]
  11. R. N. Shepard and J. D. Carroll, “Parametric representation of nonlinear data structures,” in International Symposium on Multivariate Analysis, P.R.Krishnaiah, ed. (Academic, 1966), pp. 561-592.
  12. A. D. Logvinenko and L. T. Maloney, “The proximity structure of achromatic surface colours and the impossibility of asymmetric lightness matching,” Percept. Psychophys. 68, 76-83 (2006).
    [CrossRef] [PubMed]
  13. Y. Nayatani, “On attributes of achromatic and chromatic object-color perceptions,” Color Res. Appl. 25, 318-322 (2000).
    [CrossRef]
  14. I. Lie, “Psychophysical invariants of achromatic colour vision: I. The multidimensionality of achromatic colour appearance,” Scand. J. Psychol. 10, 167-175 (1969).
    [CrossRef] [PubMed]
  15. P. Heggelund, “A bidimensional theory of achromatic color vision,” Vision Res. 32, 2107-2119 (1992).
    [CrossRef] [PubMed]
  16. C. A. Izmailov and E. N. Sokolov, “Spherical model of color and brightness discrimination,” Psychol. Sci. 2, 249-259 (1991).
    [CrossRef]
  17. T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, “Brightness and darkness as perceptual dimensions,” PLOS Comput. Biol. 3(10), e179 (2007). doi: 10.1371/journal.pcbi.0030179.
    [CrossRef]
  18. K. Shinomori, B. E. Schefrin, and J. S. Werner, “Spectral mechanisms of spatially induced blackness: data and quantitative model,” J. Opt. Soc. Am. A 14, 372-387 (1997).
    [CrossRef]
  19. G. N. Rautian, “New anomaloscope,” Biofizika 2, 734-742 (1957) (in Russian).
  20. G. V. Paramei, “Singing the Russian blues: An argument for culturally basic color terms,” Cross-Cult. Res. 39, 10-38 (2005).
    [CrossRef]
  21. T. S. Troscianko, “Saturation as a function of test-field size and surround luminance,” Color Res. Appl. 7, 89-94 (1982).
    [CrossRef]
  22. I. T. Pitt and L. M. Winter, “Effect of surround on perceived saturation,” J. Opt. Soc. Am. 64, 1328-1331 (1974).
    [CrossRef] [PubMed]
  23. R. M. Boynton, “Color, hue and wavelength,” in Handbook of Perception (Vol. 5, Vision), E.C.Carterette and M.P.Friedman, eds. (Academic, 1975), pp. 300-347.
  24. C. A. Izmailov, E. N. Sokolov, and S. Chtioui, “Spherical model of color discrimination under the conditions of simultaneous color contrast,” Vestnik Mosk. un-ta. Ser. 14. Psikhologiya No. 4, 21-36 (1999) (in Russian).
  25. D. Bimler, G. V. Paramei, and C. A. Izmailov, “A whiter shade of pale, a blacker shade of dark: Parameters of spatially induced blackness,” Visual Neurosci. 23, 579-582 (2006).
    [CrossRef]
  26. K. Fuld, T. A. Otto, and C. W. Slade, “Spectral responsivity of the white-black channel,” J. Opt. Soc. Am. A 3, 1182-1188 (1986).
    [CrossRef] [PubMed]
  27. E. Hering, Outlines of a Theory of the Light Sense. Translated by L. M. Hurvich and D. Jameson (Harvard U. Press, 1920/1964).
  28. P. C. Quinn, B. R. Wooten, and E. J. Ludman, “Achromatic color categories,” Percept. Psychophys. 37, 198-204 (1985).
    [CrossRef] [PubMed]
  29. V. J. Volbrecht and J. S. Werner, “Temporal induction of blackness: 2. Spectral efficiency and tests of additivity,” Vision Res. 29, 1437-1455 (1989).
    [CrossRef] [PubMed]
  30. K. Fuld, J. S. Werner, and B. R. Wooten, “The possible elemental nature of brown,” Vision Res. 23, 631-637 (1983).
    [CrossRef] [PubMed]
  31. P. C. Quinn, J. L. Rosano, and B. R. Wooten, “Evidence that brown is not an elemental color,” Percept. Psychophys. 43, 156-164 (1988).
    [CrossRef] [PubMed]
  32. V. J. Volbrecht and R. Kliegl, “The perception of blackness: An historical and contemporary review,” in Color Vision: Perspectives from Different Disciplines, W.G. K.Backhaus, R.Kliegl, and J.S.Werner, eds. (De Gruyter, 1998), pp. 187-206.
    [CrossRef]
  33. R. M. Evans and B. K. Swenholt, “Chromatic strength of colors. III. Chromatic surrounds and discussion,” J. Opt. Soc. Am. 59, 628-634 (1969).
    [CrossRef] [PubMed]
  34. R. M. Evans and B. K. Swenholt, “Chromatic strength of colors: Dominant wavelength and purity,” J. Opt. Soc. Am. 57, 1319-1324 (1967).
    [CrossRef] [PubMed]
  35. K. Uchikawa, K. Koida, T. Meguro, Y. Yamauchi, and I. Kuriki, “Brightness, not luminance, determines transition from the surface-color to the aperture-color mode for colored lights,” J. Opt. Soc. Am. A 18, 737-746 (2001).
    [CrossRef]
  36. K. Shinomori, Y. Nakano, and K. Uchikawa, “Influence of the illuminance and spectral composition of surround fields on spatially induced blackness,” J. Opt. Soc. Am. A 11, 2383-2388 (1994).
    [CrossRef]
  37. V. J. Volbrecht, J. S. Werner, and C. M. Cicerone, “Additivity of spatially induced blackness,” J. Opt. Soc. Am. A 7, 106-112 (1990).
    [CrossRef] [PubMed]
  38. J. S. Werner, C. M. Cicerone, R. Kliegl, and D. DellaRosa, “Spectral efficiency of blackness induction,” J. Opt. Soc. Am. A 1, 981-986 (1984).
    [CrossRef] [PubMed]
  39. J. Gordon and R. Shapley, “Brightness contrast inhibits color induction: Evidence for a new kind of color theory,” Spatial Vis. 19, 133-146 (2006).
    [CrossRef]
  40. L. M. Hurvich and D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384-404 (1957).
    [CrossRef] [PubMed]
  41. R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053-1065 (1993).
    [CrossRef] [PubMed]
  42. J. S. Werner, “Human colour vision: 2. Colour appearance and cortical transformations,” in Neuronal Coding of Perceptual Systems. Series on Biophysics and Biocybernetics, W.G. K.Backhaus, ed. (World Scientific, 2001), Vol. 9, pp. 475-497.
  43. A. Valberg and T. Seim, “Neural mechanisms of chromatic and achromatic vision,” Color Res. Appl. 33, 433-443 (2008).
    [CrossRef]
  44. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982), p. 410 ff.

2008 (1)

A. Valberg and T. Seim, “Neural mechanisms of chromatic and achromatic vision,” Color Res. Appl. 33, 433-443 (2008).
[CrossRef]

2007 (1)

T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, “Brightness and darkness as perceptual dimensions,” PLOS Comput. Biol. 3(10), e179 (2007). doi: 10.1371/journal.pcbi.0030179.
[CrossRef]

2006 (3)

A. D. Logvinenko and L. T. Maloney, “The proximity structure of achromatic surface colours and the impossibility of asymmetric lightness matching,” Percept. Psychophys. 68, 76-83 (2006).
[CrossRef] [PubMed]

D. Bimler, G. V. Paramei, and C. A. Izmailov, “A whiter shade of pale, a blacker shade of dark: Parameters of spatially induced blackness,” Visual Neurosci. 23, 579-582 (2006).
[CrossRef]

J. Gordon and R. Shapley, “Brightness contrast inhibits color induction: Evidence for a new kind of color theory,” Spatial Vis. 19, 133-146 (2006).
[CrossRef]

2005 (2)

G. V. Paramei, “Singing the Russian blues: An argument for culturally basic color terms,” Cross-Cult. Res. 39, 10-38 (2005).
[CrossRef]

D. L. Bimler and G. V. Paramei, “Bezold-Brücke effect in normal trichromats and protanopes,” J. Opt. Soc. Am. A 22, 2120-2136 (2005).
[CrossRef]

2001 (1)

2000 (1)

Y. Nayatani, “On attributes of achromatic and chromatic object-color perceptions,” Color Res. Appl. 25, 318-322 (2000).
[CrossRef]

1999 (1)

C. A. Izmailov, E. N. Sokolov, and S. Chtioui, “Spherical model of color discrimination under the conditions of simultaneous color contrast,” Vestnik Mosk. un-ta. Ser. 14. Psikhologiya No. 4, 21-36 (1999) (in Russian).

1997 (1)

1994 (1)

1993 (1)

R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053-1065 (1993).
[CrossRef] [PubMed]

1992 (1)

P. Heggelund, “A bidimensional theory of achromatic color vision,” Vision Res. 32, 2107-2119 (1992).
[CrossRef] [PubMed]

1991 (3)

C. A. Izmailov and E. N. Sokolov, “Spherical model of color and brightness discrimination,” Psychol. Sci. 2, 249-259 (1991).
[CrossRef]

K. Fuld, “The contribution of chromatic and achromatic valence to spectral saturation,” Vision Res. 31, 237-246 (1991).
[CrossRef] [PubMed]

A. Valberg, B. Lange-Malecki, and T. Seim, “Colour changes as a function of luminance,” Perception 20, 655-668 (1991).
[CrossRef] [PubMed]

1990 (1)

1989 (1)

V. J. Volbrecht and J. S. Werner, “Temporal induction of blackness: 2. Spectral efficiency and tests of additivity,” Vision Res. 29, 1437-1455 (1989).
[CrossRef] [PubMed]

1988 (2)

P. C. Quinn, J. L. Rosano, and B. R. Wooten, “Evidence that brown is not an elemental color,” Percept. Psychophys. 43, 156-164 (1988).
[CrossRef] [PubMed]

J. Gordon and I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146-152 (1988).
[CrossRef]

1986 (1)

1985 (2)

P. C. Quinn, B. R. Wooten, and E. J. Ludman, “Achromatic color categories,” Percept. Psychophys. 37, 198-204 (1985).
[CrossRef] [PubMed]

K. Fuld and T. A. Otto, “Colors of monochromatic lights that vary in contrast-induced brightness,” J. Opt. Soc. Am. A 2, 76-83 (1985).
[CrossRef] [PubMed]

1984 (1)

1983 (1)

K. Fuld, J. S. Werner, and B. R. Wooten, “The possible elemental nature of brown,” Vision Res. 23, 631-637 (1983).
[CrossRef] [PubMed]

1982 (1)

T. S. Troscianko, “Saturation as a function of test-field size and surround luminance,” Color Res. Appl. 7, 89-94 (1982).
[CrossRef]

1974 (1)

1970 (1)

1969 (2)

I. Lie, “Psychophysical invariants of achromatic colour vision: I. The multidimensionality of achromatic colour appearance,” Scand. J. Psychol. 10, 167-175 (1969).
[CrossRef] [PubMed]

R. M. Evans and B. K. Swenholt, “Chromatic strength of colors. III. Chromatic surrounds and discussion,” J. Opt. Soc. Am. 59, 628-634 (1969).
[CrossRef] [PubMed]

1967 (1)

1965 (1)

1957 (2)

G. N. Rautian, “New anomaloscope,” Biofizika 2, 734-742 (1957) (in Russian).

L. M. Hurvich and D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384-404 (1957).
[CrossRef] [PubMed]

1937 (1)

D. M. Purdy, “The Bezold-Brücke phenomenon and contours of constant hue,” Am. J. Psychol. 49, 313-315 (1937).
[CrossRef]

1931 (2)

D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541-559 (1931).
[CrossRef]

D. M. Purdy, “On the saturations and chromatic thresholds of the spectral colours,” Br. J. Psychol. 21, 282-313 (1931).

Abramov, I.

J. Gordon and I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146-152 (1988).
[CrossRef]

Bimler, D.

D. Bimler, G. V. Paramei, and C. A. Izmailov, “A whiter shade of pale, a blacker shade of dark: Parameters of spatially induced blackness,” Visual Neurosci. 23, 579-582 (2006).
[CrossRef]

Bimler, D. L.

Boynton, R. M.

R. M. Boynton and J. Gordon, “Bezold-Brücke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78-86 (1965).
[CrossRef]

R. M. Boynton, “Color, hue and wavelength,” in Handbook of Perception (Vol. 5, Vision), E.C.Carterette and M.P.Friedman, eds. (Academic, 1975), pp. 300-347.

Carroll, J. D.

R. N. Shepard and J. D. Carroll, “Parametric representation of nonlinear data structures,” in International Symposium on Multivariate Analysis, P.R.Krishnaiah, ed. (Academic, 1966), pp. 561-592.

Chtioui, S.

C. A. Izmailov, E. N. Sokolov, and S. Chtioui, “Spherical model of color discrimination under the conditions of simultaneous color contrast,” Vestnik Mosk. un-ta. Ser. 14. Psikhologiya No. 4, 21-36 (1999) (in Russian).

Cicerone, C. M.

Coren, S.

Cornelissen, F. W.

T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, “Brightness and darkness as perceptual dimensions,” PLOS Comput. Biol. 3(10), e179 (2007). doi: 10.1371/journal.pcbi.0030179.
[CrossRef]

De Valois, K. K.

R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053-1065 (1993).
[CrossRef] [PubMed]

De Valois, R. L.

R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053-1065 (1993).
[CrossRef] [PubMed]

DellaRosa, D.

Evans, R. M.

Fuld, K.

K. Fuld, “The contribution of chromatic and achromatic valence to spectral saturation,” Vision Res. 31, 237-246 (1991).
[CrossRef] [PubMed]

K. Fuld, T. A. Otto, and C. W. Slade, “Spectral responsivity of the white-black channel,” J. Opt. Soc. Am. A 3, 1182-1188 (1986).
[CrossRef] [PubMed]

K. Fuld and T. A. Otto, “Colors of monochromatic lights that vary in contrast-induced brightness,” J. Opt. Soc. Am. A 2, 76-83 (1985).
[CrossRef] [PubMed]

K. Fuld, J. S. Werner, and B. R. Wooten, “The possible elemental nature of brown,” Vision Res. 23, 631-637 (1983).
[CrossRef] [PubMed]

Gordon, J.

J. Gordon and R. Shapley, “Brightness contrast inhibits color induction: Evidence for a new kind of color theory,” Spatial Vis. 19, 133-146 (2006).
[CrossRef]

J. Gordon and I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146-152 (1988).
[CrossRef]

R. M. Boynton and J. Gordon, “Bezold-Brücke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78-86 (1965).
[CrossRef]

Heggelund, P.

P. Heggelund, “A bidimensional theory of achromatic color vision,” Vision Res. 32, 2107-2119 (1992).
[CrossRef] [PubMed]

Hering, E.

E. Hering, Outlines of a Theory of the Light Sense. Translated by L. M. Hurvich and D. Jameson (Harvard U. Press, 1920/1964).

Hurvich, L. M.

L. M. Hurvich and D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384-404 (1957).
[CrossRef] [PubMed]

Izmailov, C. A.

D. Bimler, G. V. Paramei, and C. A. Izmailov, “A whiter shade of pale, a blacker shade of dark: Parameters of spatially induced blackness,” Visual Neurosci. 23, 579-582 (2006).
[CrossRef]

C. A. Izmailov, E. N. Sokolov, and S. Chtioui, “Spherical model of color discrimination under the conditions of simultaneous color contrast,” Vestnik Mosk. un-ta. Ser. 14. Psikhologiya No. 4, 21-36 (1999) (in Russian).

C. A. Izmailov and E. N. Sokolov, “Spherical model of color and brightness discrimination,” Psychol. Sci. 2, 249-259 (1991).
[CrossRef]

Jameson, D.

L. M. Hurvich and D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384-404 (1957).
[CrossRef] [PubMed]

Keith, B.

Kliegl, R.

J. S. Werner, C. M. Cicerone, R. Kliegl, and D. DellaRosa, “Spectral efficiency of blackness induction,” J. Opt. Soc. Am. A 1, 981-986 (1984).
[CrossRef] [PubMed]

V. J. Volbrecht and R. Kliegl, “The perception of blackness: An historical and contemporary review,” in Color Vision: Perspectives from Different Disciplines, W.G. K.Backhaus, R.Kliegl, and J.S.Werner, eds. (De Gruyter, 1998), pp. 187-206.
[CrossRef]

Koida, K.

Kuriki, I.

Lange-Malecki, B.

A. Valberg, B. Lange-Malecki, and T. Seim, “Colour changes as a function of luminance,” Perception 20, 655-668 (1991).
[CrossRef] [PubMed]

Lie, I.

I. Lie, “Psychophysical invariants of achromatic colour vision: I. The multidimensionality of achromatic colour appearance,” Scand. J. Psychol. 10, 167-175 (1969).
[CrossRef] [PubMed]

Logvinenko, A. D.

A. D. Logvinenko and L. T. Maloney, “The proximity structure of achromatic surface colours and the impossibility of asymmetric lightness matching,” Percept. Psychophys. 68, 76-83 (2006).
[CrossRef] [PubMed]

Lucassen, M. P.

T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, “Brightness and darkness as perceptual dimensions,” PLOS Comput. Biol. 3(10), e179 (2007). doi: 10.1371/journal.pcbi.0030179.
[CrossRef]

Ludman, E. J.

P. C. Quinn, B. R. Wooten, and E. J. Ludman, “Achromatic color categories,” Percept. Psychophys. 37, 198-204 (1985).
[CrossRef] [PubMed]

Maloney, L. T.

A. D. Logvinenko and L. T. Maloney, “The proximity structure of achromatic surface colours and the impossibility of asymmetric lightness matching,” Percept. Psychophys. 68, 76-83 (2006).
[CrossRef] [PubMed]

Meguro, T.

Nakano, Y.

Nayatani, Y.

Y. Nayatani, “On attributes of achromatic and chromatic object-color perceptions,” Color Res. Appl. 25, 318-322 (2000).
[CrossRef]

Otto, T. A.

Paramei, G. V.

D. Bimler, G. V. Paramei, and C. A. Izmailov, “A whiter shade of pale, a blacker shade of dark: Parameters of spatially induced blackness,” Visual Neurosci. 23, 579-582 (2006).
[CrossRef]

G. V. Paramei, “Singing the Russian blues: An argument for culturally basic color terms,” Cross-Cult. Res. 39, 10-38 (2005).
[CrossRef]

D. L. Bimler and G. V. Paramei, “Bezold-Brücke effect in normal trichromats and protanopes,” J. Opt. Soc. Am. A 22, 2120-2136 (2005).
[CrossRef]

Pitt, I. T.

Purdy, D. M.

D. M. Purdy, “The Bezold-Brücke phenomenon and contours of constant hue,” Am. J. Psychol. 49, 313-315 (1937).
[CrossRef]

D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541-559 (1931).
[CrossRef]

D. M. Purdy, “On the saturations and chromatic thresholds of the spectral colours,” Br. J. Psychol. 21, 282-313 (1931).

Quinn, P. C.

P. C. Quinn, J. L. Rosano, and B. R. Wooten, “Evidence that brown is not an elemental color,” Percept. Psychophys. 43, 156-164 (1988).
[CrossRef] [PubMed]

P. C. Quinn, B. R. Wooten, and E. J. Ludman, “Achromatic color categories,” Percept. Psychophys. 37, 198-204 (1985).
[CrossRef] [PubMed]

Rautian, G. N.

G. N. Rautian, “New anomaloscope,” Biofizika 2, 734-742 (1957) (in Russian).

Rosano, J. L.

P. C. Quinn, J. L. Rosano, and B. R. Wooten, “Evidence that brown is not an elemental color,” Percept. Psychophys. 43, 156-164 (1988).
[CrossRef] [PubMed]

Schefrin, B. E.

Seim, T.

A. Valberg and T. Seim, “Neural mechanisms of chromatic and achromatic vision,” Color Res. Appl. 33, 433-443 (2008).
[CrossRef]

A. Valberg, B. Lange-Malecki, and T. Seim, “Colour changes as a function of luminance,” Perception 20, 655-668 (1991).
[CrossRef] [PubMed]

Shapley, R.

J. Gordon and R. Shapley, “Brightness contrast inhibits color induction: Evidence for a new kind of color theory,” Spatial Vis. 19, 133-146 (2006).
[CrossRef]

Shepard, R. N.

R. N. Shepard and J. D. Carroll, “Parametric representation of nonlinear data structures,” in International Symposium on Multivariate Analysis, P.R.Krishnaiah, ed. (Academic, 1966), pp. 561-592.

Shinomori, K.

Slade, C. W.

Sokolov, E. N.

C. A. Izmailov, E. N. Sokolov, and S. Chtioui, “Spherical model of color discrimination under the conditions of simultaneous color contrast,” Vestnik Mosk. un-ta. Ser. 14. Psikhologiya No. 4, 21-36 (1999) (in Russian).

C. A. Izmailov and E. N. Sokolov, “Spherical model of color and brightness discrimination,” Psychol. Sci. 2, 249-259 (1991).
[CrossRef]

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982), p. 410 ff.

Swenholt, B. K.

Troscianko, T. S.

T. S. Troscianko, “Saturation as a function of test-field size and surround luminance,” Color Res. Appl. 7, 89-94 (1982).
[CrossRef]

Uchikawa, K.

Valberg, A.

A. Valberg and T. Seim, “Neural mechanisms of chromatic and achromatic vision,” Color Res. Appl. 33, 433-443 (2008).
[CrossRef]

A. Valberg, B. Lange-Malecki, and T. Seim, “Colour changes as a function of luminance,” Perception 20, 655-668 (1991).
[CrossRef] [PubMed]

Vladusich, T.

T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, “Brightness and darkness as perceptual dimensions,” PLOS Comput. Biol. 3(10), e179 (2007). doi: 10.1371/journal.pcbi.0030179.
[CrossRef]

Volbrecht, V. J.

V. J. Volbrecht, J. S. Werner, and C. M. Cicerone, “Additivity of spatially induced blackness,” J. Opt. Soc. Am. A 7, 106-112 (1990).
[CrossRef] [PubMed]

V. J. Volbrecht and J. S. Werner, “Temporal induction of blackness: 2. Spectral efficiency and tests of additivity,” Vision Res. 29, 1437-1455 (1989).
[CrossRef] [PubMed]

V. J. Volbrecht and R. Kliegl, “The perception of blackness: An historical and contemporary review,” in Color Vision: Perspectives from Different Disciplines, W.G. K.Backhaus, R.Kliegl, and J.S.Werner, eds. (De Gruyter, 1998), pp. 187-206.
[CrossRef]

Werner, J. S.

K. Shinomori, B. E. Schefrin, and J. S. Werner, “Spectral mechanisms of spatially induced blackness: data and quantitative model,” J. Opt. Soc. Am. A 14, 372-387 (1997).
[CrossRef]

V. J. Volbrecht, J. S. Werner, and C. M. Cicerone, “Additivity of spatially induced blackness,” J. Opt. Soc. Am. A 7, 106-112 (1990).
[CrossRef] [PubMed]

V. J. Volbrecht and J. S. Werner, “Temporal induction of blackness: 2. Spectral efficiency and tests of additivity,” Vision Res. 29, 1437-1455 (1989).
[CrossRef] [PubMed]

J. S. Werner, C. M. Cicerone, R. Kliegl, and D. DellaRosa, “Spectral efficiency of blackness induction,” J. Opt. Soc. Am. A 1, 981-986 (1984).
[CrossRef] [PubMed]

K. Fuld, J. S. Werner, and B. R. Wooten, “The possible elemental nature of brown,” Vision Res. 23, 631-637 (1983).
[CrossRef] [PubMed]

J. S. Werner, “Human colour vision: 2. Colour appearance and cortical transformations,” in Neuronal Coding of Perceptual Systems. Series on Biophysics and Biocybernetics, W.G. K.Backhaus, ed. (World Scientific, 2001), Vol. 9, pp. 475-497.

Winter, L. M.

Wooten, B. R.

P. C. Quinn, J. L. Rosano, and B. R. Wooten, “Evidence that brown is not an elemental color,” Percept. Psychophys. 43, 156-164 (1988).
[CrossRef] [PubMed]

P. C. Quinn, B. R. Wooten, and E. J. Ludman, “Achromatic color categories,” Percept. Psychophys. 37, 198-204 (1985).
[CrossRef] [PubMed]

K. Fuld, J. S. Werner, and B. R. Wooten, “The possible elemental nature of brown,” Vision Res. 23, 631-637 (1983).
[CrossRef] [PubMed]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982), p. 410 ff.

Yamauchi, Y.

Am. J. Psychol. (2)

D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541-559 (1931).
[CrossRef]

D. M. Purdy, “The Bezold-Brücke phenomenon and contours of constant hue,” Am. J. Psychol. 49, 313-315 (1937).
[CrossRef]

Biofizika (1)

G. N. Rautian, “New anomaloscope,” Biofizika 2, 734-742 (1957) (in Russian).

Br. J. Psychol. (1)

D. M. Purdy, “On the saturations and chromatic thresholds of the spectral colours,” Br. J. Psychol. 21, 282-313 (1931).

Color Res. Appl. (4)

J. Gordon and I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146-152 (1988).
[CrossRef]

Y. Nayatani, “On attributes of achromatic and chromatic object-color perceptions,” Color Res. Appl. 25, 318-322 (2000).
[CrossRef]

T. S. Troscianko, “Saturation as a function of test-field size and surround luminance,” Color Res. Appl. 7, 89-94 (1982).
[CrossRef]

A. Valberg and T. Seim, “Neural mechanisms of chromatic and achromatic vision,” Color Res. Appl. 33, 433-443 (2008).
[CrossRef]

Cross-Cult. Res. (1)

G. V. Paramei, “Singing the Russian blues: An argument for culturally basic color terms,” Cross-Cult. Res. 39, 10-38 (2005).
[CrossRef]

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. A (8)

Percept. Psychophys. (3)

P. C. Quinn, B. R. Wooten, and E. J. Ludman, “Achromatic color categories,” Percept. Psychophys. 37, 198-204 (1985).
[CrossRef] [PubMed]

P. C. Quinn, J. L. Rosano, and B. R. Wooten, “Evidence that brown is not an elemental color,” Percept. Psychophys. 43, 156-164 (1988).
[CrossRef] [PubMed]

A. D. Logvinenko and L. T. Maloney, “The proximity structure of achromatic surface colours and the impossibility of asymmetric lightness matching,” Percept. Psychophys. 68, 76-83 (2006).
[CrossRef] [PubMed]

Perception (1)

A. Valberg, B. Lange-Malecki, and T. Seim, “Colour changes as a function of luminance,” Perception 20, 655-668 (1991).
[CrossRef] [PubMed]

PLOS Comput. Biol. (1)

T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, “Brightness and darkness as perceptual dimensions,” PLOS Comput. Biol. 3(10), e179 (2007). doi: 10.1371/journal.pcbi.0030179.
[CrossRef]

Psychol. Rev. (1)

L. M. Hurvich and D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384-404 (1957).
[CrossRef] [PubMed]

Psychol. Sci. (1)

C. A. Izmailov and E. N. Sokolov, “Spherical model of color and brightness discrimination,” Psychol. Sci. 2, 249-259 (1991).
[CrossRef]

Scand. J. Psychol. (1)

I. Lie, “Psychophysical invariants of achromatic colour vision: I. The multidimensionality of achromatic colour appearance,” Scand. J. Psychol. 10, 167-175 (1969).
[CrossRef] [PubMed]

Spatial Vis. (1)

J. Gordon and R. Shapley, “Brightness contrast inhibits color induction: Evidence for a new kind of color theory,” Spatial Vis. 19, 133-146 (2006).
[CrossRef]

Vestnik Mosk. un-ta. Ser. 14. Psikhologiya (1)

C. A. Izmailov, E. N. Sokolov, and S. Chtioui, “Spherical model of color discrimination under the conditions of simultaneous color contrast,” Vestnik Mosk. un-ta. Ser. 14. Psikhologiya No. 4, 21-36 (1999) (in Russian).

Vision Res. (5)

V. J. Volbrecht and J. S. Werner, “Temporal induction of blackness: 2. Spectral efficiency and tests of additivity,” Vision Res. 29, 1437-1455 (1989).
[CrossRef] [PubMed]

K. Fuld, J. S. Werner, and B. R. Wooten, “The possible elemental nature of brown,” Vision Res. 23, 631-637 (1983).
[CrossRef] [PubMed]

P. Heggelund, “A bidimensional theory of achromatic color vision,” Vision Res. 32, 2107-2119 (1992).
[CrossRef] [PubMed]

K. Fuld, “The contribution of chromatic and achromatic valence to spectral saturation,” Vision Res. 31, 237-246 (1991).
[CrossRef] [PubMed]

R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053-1065 (1993).
[CrossRef] [PubMed]

Visual Neurosci. (1)

D. Bimler, G. V. Paramei, and C. A. Izmailov, “A whiter shade of pale, a blacker shade of dark: Parameters of spatially induced blackness,” Visual Neurosci. 23, 579-582 (2006).
[CrossRef]

Other (6)

E. Hering, Outlines of a Theory of the Light Sense. Translated by L. M. Hurvich and D. Jameson (Harvard U. Press, 1920/1964).

R. M. Boynton, “Color, hue and wavelength,” in Handbook of Perception (Vol. 5, Vision), E.C.Carterette and M.P.Friedman, eds. (Academic, 1975), pp. 300-347.

V. J. Volbrecht and R. Kliegl, “The perception of blackness: An historical and contemporary review,” in Color Vision: Perspectives from Different Disciplines, W.G. K.Backhaus, R.Kliegl, and J.S.Werner, eds. (De Gruyter, 1998), pp. 187-206.
[CrossRef]

R. N. Shepard and J. D. Carroll, “Parametric representation of nonlinear data structures,” in International Symposium on Multivariate Analysis, P.R.Krishnaiah, ed. (Academic, 1966), pp. 561-592.

J. S. Werner, “Human colour vision: 2. Colour appearance and cortical transformations,” in Neuronal Coding of Perceptual Systems. Series on Biophysics and Biocybernetics, W.G. K.Backhaus, ed. (World Scientific, 2001), Vol. 9, pp. 475-497.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982), p. 410 ff.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Color-naming functions, aggregated over three subjects, for six luminance ratios L A : L C (where central luminance L C = 10 cd / m 2 ). In each panel, abscissa is wavelength λ C of the chromatic central field and ordinate is percentage of total naming score. Naming functions are plotted in lines of appropriate color.

Fig. 2
Fig. 2

D 3 D 4 projection of the MDS solution (achromatic plane). Horizontal axis D 3 = Induced Blackness; vertical axis D 4 = Desaturation . Units along both axes are arbitrary. For each λ C , a line connects the six points—all marked with the same (arbitrary) symbol—representing the six stimuli with the same λ C but different annular intensities. Eight lines are identified as examples.

Fig. 3
Fig. 3

Hue angle (in degrees; horizontal axis) for each λ C , showing the effects of (a) Induced Blackness x i 3 (vertical axis) and (b) luminance of the chromatic center, L C ( log cd m 2 ) . Vertical-axis scale in (b) is reversed for parity with (a).

Fig. 4
Fig. 4

Desaturation (vertical axis) as a function of λ C (horizontal axis) and a second variable (third axis, out of the plane of the page). Second variable is (a) spatial contrast and (b) central luminance L C . The list of wavelengths used to provide (b) does not overlap completely the wavelengths in the present research.

Fig. 5
Fig. 5

Luminance ratio L A : L C predicted to reach maximum-saturation function MaxS ( λ C ) , plotted as black curve. Dark gray, dashed, and light gray curves indicate the ratio predicted to produce x i 3 = 0 , 2 , 4 (i.e., to induce three specific levels of blackness induction), as a function of λ C . Abscissa shows wavelength λ C of the chromatic central field.

Fig. 6
Fig. 6

Schematic diagram of achromatic plane. Example of empirical V-profile shows locations of 494 nm stimuli. Diagonal lines indicate unipolar axes of Darkness and Lightness (more specifically, Black Desaturation and White Desaturation). These arise from two achromatic qualities created by spatial contrast: Induced Blackness (or with polarity reversed, Lightness) and Desaturation. Dashed vertical lines indicate some of the thresholds used to measure induced blackness (see text for further details).

Fig. 7
Fig. 7

Model of multistage processing of chromatic information. Boxes indicate loci and operations contributing to the influence of spatial luminance contrast and responsible for color appearance effects. See text for details. 1. Compressive, asymmetric nonlinearity on S 0 channel (produces Luminance / Saturation effect). 2. Calculation of chrominance: X = S 0 + L M (produces failure of additivity). 3. Brightness B = Luminance + β X for some parameter β. 4. Achromatic contrast (AC) between central Brightness and surround Luminance: AC = B L ° . 5. Lightness: D 3 = Luminance + γ AC. Induced Blackness = same axis with reverse polarity. 6. Desaturating signal = B L ° = absolute value of AC. 7. Saturation: D 4 = X AC (i.e. chrominance, reduced by Desaturating signal). Desaturation is same axis with reverse polarity. 8. Chromatic contrast: S 0 ° and ( L M ) ° signals from surround induce complementary hue into center. 9. Achromatic contrast signal inhibits or promotes the chromatic signals S 0 and ( L M ) (necessary for induced blackness to affect hue). 10. Expansive, symmetric nonlinearity on the S 0 channel (produces Luminance/Hue effect, or BB hue shift).

Metrics