J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin oncentration,” Phys. Med. Biol. 52, 141-168 (2007).

[CrossRef]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Gradient-based quantitative photoacoustic image reconstruction for molecular imaging,” Proc. SPIE 6437, 1T1-1T9 (2007).

Z. Yuan, Q. Wang, and H. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method,” Opt. Express 15, 18076-18081 (2007).

[CrossRef]
[PubMed]

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866-1875 (2006).

[CrossRef]
[PubMed]

H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23, 878-888 (2006).

[CrossRef]

Z. Yuan, H. Zhao, C. Wu, Q. Zhang, and H. Jiang, “Finite-element-based photoacoustic tomography: phantom and chicken bone experiments,” Appl. Opt. 45, 3177-3183 (2006).

[CrossRef]
[PubMed]

Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88, 231101 (2006).

[CrossRef]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101-22 (2006).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005).

[CrossRef]
[PubMed]

J. Ripoll and V. Ntziachristos, “Quantitative photoacoustic inversion formulas for scattering and absorption media,” Phys. Rev. E 71, 031912(1-9) (2005).

[CrossRef]

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616-3627 (2005).

[CrossRef]
[PubMed]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409-4428 (2005).

[CrossRef]
[PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 813-816 (2003).

[CrossRef]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).

[CrossRef]
[PubMed]

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiments,” Med. Phys. 29, 2799-2805 (2002).

[CrossRef]

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. (Washington, D.C.) 103, 487-518 (2002).

[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).

[CrossRef]

C. Zhu, R. H. Byrd, and J. Nocedal, “L-BFGS-B: algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization,” ACM Trans. Math. Softw. 23, 550-560 (1997).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).

[CrossRef]
[PubMed]

Y. Yamada, “Light-tissue interaction and optical imaging in biomedicine,” Annu. Rev. Heat Transfer 6, 1-59 (1995).

B. T. Cox, S. R. Arridge, and P. C. Beard, “Gradient-based quantitative photoacoustic image reconstruction for molecular imaging,” Proc. SPIE 6437, 1T1-1T9 (2007).

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866-1875 (2006).

[CrossRef]
[PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005).

[CrossRef]
[PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).

[CrossRef]

S. R. Arridge and M. Schweiger, “A gradient-based optimization scheme for optical tomography,” Opt. Express 6, 213-226 (1998).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).

[CrossRef]
[PubMed]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin oncentration,” Phys. Med. Biol. 52, 141-168 (2007).

[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409-4428 (2005).

[CrossRef]
[PubMed]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Gradient-based quantitative photoacoustic image reconstruction for molecular imaging,” Proc. SPIE 6437, 1T1-1T9 (2007).

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866-1875 (2006).

[CrossRef]
[PubMed]

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616-3627 (2005).

[CrossRef]
[PubMed]

C. Zhu, R. H. Byrd, and J. Nocedal, “L-BFGS-B: algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization,” ACM Trans. Math. Softw. 23, 550-560 (1997).

[CrossRef]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Gradient-based quantitative photoacoustic image reconstruction for molecular imaging,” Proc. SPIE 6437, 1T1-1T9 (2007).

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866-1875 (2006).

[CrossRef]
[PubMed]

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616-3627 (2005).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).

[CrossRef]
[PubMed]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin oncentration,” Phys. Med. Biol. 52, 141-168 (2007).

[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409-4428 (2005).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).

[CrossRef]
[PubMed]

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. (Washington, D.C.) 103, 487-518 (2002).

[CrossRef]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin oncentration,” Phys. Med. Biol. 52, 141-168 (2007).

[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409-4428 (2005).

[CrossRef]
[PubMed]

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiments,” Med. Phys. 29, 2799-2805 (2002).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).

[CrossRef]
[PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).

[CrossRef]
[PubMed]

S. L. Jacques and L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A.J.Welch and M.J. C.van Gemert, eds. (Plenum, 1995).

Z. Yuan, Q. Wang, and H. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method,” Opt. Express 15, 18076-18081 (2007).

[CrossRef]
[PubMed]

Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88, 231101 (2006).

[CrossRef]

H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23, 878-888 (2006).

[CrossRef]

Z. Yuan, H. Zhao, C. Wu, Q. Zhang, and H. Jiang, “Finite-element-based photoacoustic tomography: phantom and chicken bone experiments,” Appl. Opt. 45, 3177-3183 (2006).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).

[CrossRef]
[PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 813-816 (2003).

[CrossRef]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin oncentration,” Phys. Med. Biol. 52, 141-168 (2007).

[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409-4428 (2005).

[CrossRef]
[PubMed]

C. Zhu, R. H. Byrd, and J. Nocedal, “L-BFGS-B: algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization,” ACM Trans. Math. Softw. 23, 550-560 (1997).

[CrossRef]

J. Ripoll and V. Ntziachristos, “Quantitative photoacoustic inversion formulas for scattering and absorption media,” Phys. Rev. E 71, 031912(1-9) (2005).

[CrossRef]

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. (Washington, D.C.) 103, 487-518 (2002).

[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 813-816 (2003).

[CrossRef]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).

[CrossRef]
[PubMed]

J. Ripoll and V. Ntziachristos, “Quantitative photoacoustic inversion formulas for scattering and absorption media,” Phys. Rev. E 71, 031912(1-9) (2005).

[CrossRef]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).

[CrossRef]
[PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 813-816 (2003).

[CrossRef]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).

[CrossRef]
[PubMed]

S. L. Jacques and L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A.J.Welch and M.J. C.van Gemert, eds. (Plenum, 1995).

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101-22 (2006).

[CrossRef]

L. V. Wang, “Ultrasound-modulated biophotonic imaging: A review of acousto-optical tomography and photoacoustic tomography,” Dis. Markers 19, 123-138 (2003, 2004).

[PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 813-816 (2003).

[CrossRef]

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiments,” Med. Phys. 29, 2799-2805 (2002).

[CrossRef]

G. Yao and L. V. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39, 659-664 (2000).

[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 813-816 (2003).

[CrossRef]

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiments,” Med. Phys. 29, 2799-2805 (2002).

[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 813-816 (2003).

[CrossRef]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101-22 (2006).

[CrossRef]

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiments,” Med. Phys. 29, 2799-2805 (2002).

[CrossRef]

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiments,” Med. Phys. 29, 2799-2805 (2002).

[CrossRef]

Y. Yamada, “Light-tissue interaction and optical imaging in biomedicine,” Annu. Rev. Heat Transfer 6, 1-59 (1995).

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiments,” Med. Phys. 29, 2799-2805 (2002).

[CrossRef]

Z. Yuan, Q. Wang, and H. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method,” Opt. Express 15, 18076-18081 (2007).

[CrossRef]
[PubMed]

Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88, 231101 (2006).

[CrossRef]

H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23, 878-888 (2006).

[CrossRef]

Z. Yuan, H. Zhao, C. Wu, Q. Zhang, and H. Jiang, “Finite-element-based photoacoustic tomography: phantom and chicken bone experiments,” Appl. Opt. 45, 3177-3183 (2006).

[CrossRef]
[PubMed]

C. Zhu, R. H. Byrd, and J. Nocedal, “L-BFGS-B: algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization,” ACM Trans. Math. Softw. 23, 550-560 (1997).

[CrossRef]

C. Zhu, R. H. Byrd, and J. Nocedal, “L-BFGS-B: algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization,” ACM Trans. Math. Softw. 23, 550-560 (1997).

[CrossRef]

Y. Yamada, “Light-tissue interaction and optical imaging in biomedicine,” Annu. Rev. Heat Transfer 6, 1-59 (1995).

G. Yao and L. V. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39, 659-664 (2000).

[CrossRef]

C. G. A. Hoelen and F. F. M. deMul, “Image reconstruction for photoacoustic scanning of tissue structures,” Appl. Opt. 39, 5872-5883 (2000).

[CrossRef]

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866-1875 (2006).

[CrossRef]
[PubMed]

Z. Yuan, H. Zhao, C. Wu, Q. Zhang, and H. Jiang, “Finite-element-based photoacoustic tomography: phantom and chicken bone experiments,” Appl. Opt. 45, 3177-3183 (2006).

[CrossRef]
[PubMed]

Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88, 231101 (2006).

[CrossRef]

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. (Washington, D.C.) 103, 487-518 (2002).

[CrossRef]

L. V. Wang, “Ultrasound-modulated biophotonic imaging: A review of acousto-optical tomography and photoacoustic tomography,” Dis. Markers 19, 123-138 (2003, 2004).

[PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).

[CrossRef]

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616-3627 (2005).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).

[CrossRef]
[PubMed]

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiments,” Med. Phys. 29, 2799-2805 (2002).

[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 813-816 (2003).

[CrossRef]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin oncentration,” Phys. Med. Biol. 52, 141-168 (2007).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005).

[CrossRef]
[PubMed]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409-4428 (2005).

[CrossRef]
[PubMed]

J. Ripoll and V. Ntziachristos, “Quantitative photoacoustic inversion formulas for scattering and absorption media,” Phys. Rev. E 71, 031912(1-9) (2005).

[CrossRef]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).

[CrossRef]
[PubMed]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Gradient-based quantitative photoacoustic image reconstruction for molecular imaging,” Proc. SPIE 6437, 1T1-1T9 (2007).

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101-22 (2006).

[CrossRef]

S. L. Jacques and L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A.J.Welch and M.J. C.van Gemert, eds. (Plenum, 1995).