Abstract

Although the longitudinal chromatic aberration (LCA) of the adult eye has been studied, there are no data collected from the human infant eye. A chromatic retinoscope was used to measure cyclopleged infant and adult refractions with four pseudomonochromatic sources (centered at 472, 538, 589, and 652nm) and with polychromatic light. The LCA of the infant eyes between 472 and 652nm was a factor of 1.7 greater than the LCA found in the adult group: infant mean=1.62D, SD±0.14D; adult mean=0.96D, SD±0.17D. The elevated level of LCA in infant eyes is consistent with the greater optical power of the immature eye and indicates similar chromatic dispersion in infant and adult eyes. The implications for visual performance, defocus detection, and measurement of refraction are discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Sivak and T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997-1003 (1982).
    [CrossRef] [PubMed]
  2. V. Dobson and D. Y. Teller, “Visual acuity in human infants: a review and comparison of behavioral and electrophysiological studies,” Vision Res. 18, 1469-1483 (1978).
    [CrossRef] [PubMed]
  3. A. M. Norcia and C. W. Tyler, “Spatial frequency sweep VEP: visual acuity during the first year of life,” Vision Res. 25, 1399-1408 (1985).
    [CrossRef] [PubMed]
  4. A. M. Norcia, C. W. Tyler, and R. D. Hamer, “Development of contrast sensitivity in the human infant,” Vision Res. 30, 1475-1486 (1990).
    [CrossRef] [PubMed]
  5. M. S. Banks and P. Salapatek, “Contrast sensitivity function of the infant visual system,” Vision Res. 16, 867-869 (1976).
    [CrossRef] [PubMed]
  6. D. Y. Teller, “First glances: the vision of infants. the Friedenwald lecture,” Invest. Ophthalmol. Visual Sci. 38, 2183-2203 (1997).
  7. M. S. Banks and P. J. Bennett, “Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates,” J. Opt. Soc. Am. A 5, 2059-2079 (1988).
    [CrossRef] [PubMed]
  8. H. R. Wilson, “Development of spatiotemporal mechanisms in infant vision,” Vision Res. 28, 611-628 (1988).
    [CrossRef] [PubMed]
  9. A. M. Brown, V. Dobson, and J. Maier, “Visual acuity of human infants at scotopic, mesopic and photopic luminances,” Vision Res. 27, 1845-1858 (1987).
    [CrossRef] [PubMed]
  10. F. J. Rucker and P. B. Kruger, “Accommodation responses to stimuli in cone contrast space,” Vision Res. 44, 2931-2944 (2004).
    [CrossRef] [PubMed]
  11. P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995).
    [CrossRef]
  12. P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397-1411 (1993).
    [CrossRef] [PubMed]
  13. F. J. Rucker and P. B. Kruger, “Cone contributions to signals for accommodation and the relationship to refractive error,” Vision Res. 46, 3079-3089 (2006).
    [CrossRef] [PubMed]
  14. C. F. Wildsoet, H. C. Howland, S. Falconer, and K. Dick, “Chromatic aberration and accommodation: their role in emmetropization in the chick,” Vision Res. 33, 1593-1603 (1993).
    [CrossRef] [PubMed]
  15. B. Rohrer, F. Schaeffel, and E. Zrenner, “Longitudinal chromatic aberration and emmetropization: results from the chicken eye,” J. Physiol. (London) 449, 363-376 (1992).
  16. L. N. Thibos, M. Ye, X. X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594-3600 (1992).
    [CrossRef] [PubMed]
  17. G. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321-336 (1947).
    [CrossRef] [PubMed]
  18. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564-565 (1957).
    [CrossRef] [PubMed]
  19. A. Ivanoff, “Les aberrations de l'oeil leur rôle dans l'accommodation,” Revue d'Optique Théorique et Instrumentale (Durand, Paris, 1953), pp. 43-44.
  20. M. Millodot and J. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Br. J. Physiol. Opt. 28, 169-174 (1973).
    [PubMed]
  21. W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999-1005 (1976).
    [CrossRef] [PubMed]
  22. L. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4152-4155 (1981).
    [CrossRef] [PubMed]
  23. A. L. Lewis, M. Katz, and C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
    [PubMed]
  24. C. Ware, “Human axial chromatic aberration found not to decline with age,” Graefe's Arch. Clin. Exp. Ophthalmol. 218, 39-41 (1982).
    [CrossRef]
  25. J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62, 864-869 (1985).
    [PubMed]
  26. P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361-366 (1986).
    [CrossRef] [PubMed]
  27. D. P. Cooper and P. L. Pease, “Longitudinal chromatic aberration of the human eye and wavelength in focus,” Am. J. Optom. Physiol. Opt. 65, 99-107 (1988).
    [PubMed]
  28. L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599-607 (1991).
    [CrossRef]
  29. E. J. Fernandez, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13, 400-409 (2005).
    [CrossRef] [PubMed]
  30. A. Morrell, H. D. Whitefoot, and W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11, 385-390 (1991).
    [CrossRef] [PubMed]
  31. P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5, 2087-2092 (1988).
    [CrossRef] [PubMed]
  32. J. S. Larsen, “The sagittal growth of the eye. IV. Ultrasonic measurement of the axial length of the eye from birth to puberty,” Acta Ophthalmol. 49, 873-886 (1971).
  33. H. H. Emsley, Optics of Vision, Vol. 1, Visual Optics (Hatton Press, 1963).
  34. I. C. Wood, D. O. Mutti, and K. Zadnik, “Crystalline lens parameters in infancy,” Ophthalmic Physiol. Opt. 16, 310-317 (1996).
    [CrossRef] [PubMed]
  35. C. W. Bobier and J. G. Sivak, “Chromoretinoscopy,” Vision Res. 18, 247-250 (1978).
    [CrossRef] [PubMed]
  36. C. W. Bobier and J. G. Sivak, “Chromoretinoscopy and its instrumentation,” Am. J. Optom. Physiol. Opt. 57, 106-108 (1980).
    [PubMed]
  37. ANSI-Z136.1, American National Standard for Safe Use of Lasers (Laser Institute of America, Orlando, 2000).
  38. A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of subretinal structures in the human ocular fundus,” Vision Res. 36, 191-205 (1996).
    [CrossRef] [PubMed]
  39. D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal Optometer,” Optom. Vision Sci. 72, 279-284 (1995).
    [CrossRef]
  40. T. N. Cornsweet, “The staircase-method in psychophysics,” Am. J. Psychol. 75, 485-491 (1962).
    [CrossRef] [PubMed]
  41. K. J. Saunders, J. M. Woodhouse, and C. A. Westall, “Emmetropisation in human infancy: rate of change is related to initial refractive error,” Vision Res. 35, 1325-1328 (1995).
    [CrossRef] [PubMed]
  42. D. L. Mayer, R. M. Hansen, B. D. Moore, S. Kim, and A. B. Fulton, “Cycloplegic refractions in healthy children aged 1 through 48 months,” Arch. Ophthalmol. (Chicago) 119, 1625-1628 (2001).
  43. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502-507 (2001); erratum in Nat. Med. 7, 636 (2001).
    [CrossRef] [PubMed]
  44. T. R. Candy, J. A. Crowell, and M. S. Banks, “Optical, receptoral, and retinal constraints on foveal and peripheral vision in the human neonate,” Vision Res. 38, 3857-3870 (1998).
    [CrossRef]
  45. R. Navarro, P. Artal, and D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201-212 (1993).
    [CrossRef] [PubMed]
  46. M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513-522 (1998).
    [CrossRef] [PubMed]
  47. P. M. Riddell, L. Hainline, and I. Abramov, “Calibration of the Hirschberg test in human infants,” Invest. Ophthalmol. Visual Sci. 35, 538-543 (1994).
  48. G. Smith, R. J. Jacobs, and C. D. Chan, “Effect of defocus on visual acuity as measured by source and observer methods,” Optom. Vision Sci. 66, 430-435 (1989).
    [CrossRef]
  49. G. Smith, “Angular diameter of defocus blur discs,” Am. J. Optom. Physiol. Opt. 59, 885-889 (1982).
    [PubMed]
  50. J. Wang and T. R. Candy, “Higher order monochromatic aberrations of the human infant eye,” J. Vision 5, 543-555 (2005).
    [CrossRef]
  51. C. MacLachlan and H. C. Howland, “Normal values and standard deviations for pupil diameter and interpupillary distance in subjects aged 1 monthto19 years,” Ophthalmic Physiol. Opt. 22, 175-182 (2002).
    [CrossRef] [PubMed]
  52. M. S. Banks, “The development of visual accommodation during early infancy,” Child Dev. 51, 646-666 (1980).
    [CrossRef] [PubMed]
  53. P. Salapatek and M. S. Banks, “Infant sensory assessment: vision,” in Communicative and Cognitive Abilities: Early Behavioral Assessment, F.D.Minifie and L.L.Lloyd, eds. (University Park Press, 1978).
  54. E. A. Boettner and J. R. Wolter, “Transmission of the Ocular Media,” Air Force Technical Documentary Report No. MRL-TDR-62-34 (1962).
  55. R. A. Bone, J. T. Landrum, L. Fernandez, and S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Visual Sci. 29, 843-849 (1988).
  56. J. G. Sivak and C. W. Bobier, “Accommodation and chromatic aberration in young children,” Invest. Ophthalmol. Visual Sci. 17, 705-709 (1978).
  57. M. L. Bieber, K. Knoblauch, and J. S. Werner, “M- and L-cones in early infancy: II. Action spectra at 8 weeks of age,” Vision Res. 38, 1765-1773 (1998).
    [CrossRef] [PubMed]
  58. J. E. Clavadetscher, A. M. Brown, C. Ankrum, and D. Y. Teller, “Spectral sensitivity and chromatic discriminations in 3- and 7-week-old human infants,” J. Opt. Soc. Am. A 5, 2093-2105 (1988).
    [CrossRef] [PubMed]
  59. A. B. Fulton and R. M. Hansen, “The development of scotopic sensitivity,” Invest. Ophthalmol. Visual Sci. 41, 1588-1596 (2000).
  60. J. S. Werner, “Development of scotopic sensitivity and the absorption spectrum of the human ocular media,” J. Opt. Soc. Am. 72, 247-258 (1982).
    [CrossRef] [PubMed]
  61. E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthamol. 35, 381-393 (1951).
    [CrossRef]
  62. J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447-468 (2004).
    [CrossRef] [PubMed]
  63. J. Wang and T. R. Candy, “The threshold stimulus for accommodation in human infants,” Invest. Ophthalmol. Visual Sci. Suppl. 47, 271 (2006).
  64. J. Wang, S. R. Bharadwaj, and T. R. Candy, “The monocular threshold stimulus for accommodation in human infants,” Invest. Ophthalmol. Visual Sci. Suppl. 48, 47 (2007).
  65. G. G. Heath, “Components of accommodation,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 569-579 (1956).
    [PubMed]
  66. B. J. Wilson, K. E. Decker, and A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” J. Opt. Soc. Am. A 19, 833-839 (2002).
    [CrossRef]
  67. E. J. Fernandez and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22, 1732-1738 (2005).
    [CrossRef]
  68. K. M. Hampson, C. Paterson, C. Dainty, and E. A. Mallen, “Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control,” J. Opt. Soc. Am. A 23, 1082-1088 (2006).
    [CrossRef]
  69. L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23, 1-8 (2006).
    [CrossRef]
  70. G. M. Tondel and T. R. Candy, “Human infants' accommodation responses to dynamic stimuli,” Invest. Ophthalmol. Visual Sci. 48, 949-956 (2007).
    [CrossRef]
  71. M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168, 605-606 (1970).
    [CrossRef] [PubMed]

2007 (2)

J. Wang, S. R. Bharadwaj, and T. R. Candy, “The monocular threshold stimulus for accommodation in human infants,” Invest. Ophthalmol. Visual Sci. Suppl. 48, 47 (2007).

G. M. Tondel and T. R. Candy, “Human infants' accommodation responses to dynamic stimuli,” Invest. Ophthalmol. Visual Sci. 48, 949-956 (2007).
[CrossRef]

2006 (4)

2005 (3)

2004 (2)

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447-468 (2004).
[CrossRef] [PubMed]

F. J. Rucker and P. B. Kruger, “Accommodation responses to stimuli in cone contrast space,” Vision Res. 44, 2931-2944 (2004).
[CrossRef] [PubMed]

2002 (2)

B. J. Wilson, K. E. Decker, and A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” J. Opt. Soc. Am. A 19, 833-839 (2002).
[CrossRef]

C. MacLachlan and H. C. Howland, “Normal values and standard deviations for pupil diameter and interpupillary distance in subjects aged 1 monthto19 years,” Ophthalmic Physiol. Opt. 22, 175-182 (2002).
[CrossRef] [PubMed]

2001 (2)

D. L. Mayer, R. M. Hansen, B. D. Moore, S. Kim, and A. B. Fulton, “Cycloplegic refractions in healthy children aged 1 through 48 months,” Arch. Ophthalmol. (Chicago) 119, 1625-1628 (2001).

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502-507 (2001); erratum in Nat. Med. 7, 636 (2001).
[CrossRef] [PubMed]

2000 (1)

A. B. Fulton and R. M. Hansen, “The development of scotopic sensitivity,” Invest. Ophthalmol. Visual Sci. 41, 1588-1596 (2000).

1998 (3)

T. R. Candy, J. A. Crowell, and M. S. Banks, “Optical, receptoral, and retinal constraints on foveal and peripheral vision in the human neonate,” Vision Res. 38, 3857-3870 (1998).
[CrossRef]

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513-522 (1998).
[CrossRef] [PubMed]

M. L. Bieber, K. Knoblauch, and J. S. Werner, “M- and L-cones in early infancy: II. Action spectra at 8 weeks of age,” Vision Res. 38, 1765-1773 (1998).
[CrossRef] [PubMed]

1997 (1)

D. Y. Teller, “First glances: the vision of infants. the Friedenwald lecture,” Invest. Ophthalmol. Visual Sci. 38, 2183-2203 (1997).

1996 (2)

I. C. Wood, D. O. Mutti, and K. Zadnik, “Crystalline lens parameters in infancy,” Ophthalmic Physiol. Opt. 16, 310-317 (1996).
[CrossRef] [PubMed]

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of subretinal structures in the human ocular fundus,” Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

1995 (3)

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal Optometer,” Optom. Vision Sci. 72, 279-284 (1995).
[CrossRef]

K. J. Saunders, J. M. Woodhouse, and C. A. Westall, “Emmetropisation in human infancy: rate of change is related to initial refractive error,” Vision Res. 35, 1325-1328 (1995).
[CrossRef] [PubMed]

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995).
[CrossRef]

1994 (1)

P. M. Riddell, L. Hainline, and I. Abramov, “Calibration of the Hirschberg test in human infants,” Invest. Ophthalmol. Visual Sci. 35, 538-543 (1994).

1993 (3)

R. Navarro, P. Artal, and D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201-212 (1993).
[CrossRef] [PubMed]

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

C. F. Wildsoet, H. C. Howland, S. Falconer, and K. Dick, “Chromatic aberration and accommodation: their role in emmetropization in the chick,” Vision Res. 33, 1593-1603 (1993).
[CrossRef] [PubMed]

1992 (2)

B. Rohrer, F. Schaeffel, and E. Zrenner, “Longitudinal chromatic aberration and emmetropization: results from the chicken eye,” J. Physiol. (London) 449, 363-376 (1992).

L. N. Thibos, M. Ye, X. X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594-3600 (1992).
[CrossRef] [PubMed]

1991 (2)

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599-607 (1991).
[CrossRef]

A. Morrell, H. D. Whitefoot, and W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11, 385-390 (1991).
[CrossRef] [PubMed]

1990 (1)

A. M. Norcia, C. W. Tyler, and R. D. Hamer, “Development of contrast sensitivity in the human infant,” Vision Res. 30, 1475-1486 (1990).
[CrossRef] [PubMed]

1989 (1)

G. Smith, R. J. Jacobs, and C. D. Chan, “Effect of defocus on visual acuity as measured by source and observer methods,” Optom. Vision Sci. 66, 430-435 (1989).
[CrossRef]

1988 (6)

J. E. Clavadetscher, A. M. Brown, C. Ankrum, and D. Y. Teller, “Spectral sensitivity and chromatic discriminations in 3- and 7-week-old human infants,” J. Opt. Soc. Am. A 5, 2093-2105 (1988).
[CrossRef] [PubMed]

R. A. Bone, J. T. Landrum, L. Fernandez, and S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Visual Sci. 29, 843-849 (1988).

M. S. Banks and P. J. Bennett, “Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates,” J. Opt. Soc. Am. A 5, 2059-2079 (1988).
[CrossRef] [PubMed]

H. R. Wilson, “Development of spatiotemporal mechanisms in infant vision,” Vision Res. 28, 611-628 (1988).
[CrossRef] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5, 2087-2092 (1988).
[CrossRef] [PubMed]

D. P. Cooper and P. L. Pease, “Longitudinal chromatic aberration of the human eye and wavelength in focus,” Am. J. Optom. Physiol. Opt. 65, 99-107 (1988).
[PubMed]

1987 (1)

A. M. Brown, V. Dobson, and J. Maier, “Visual acuity of human infants at scotopic, mesopic and photopic luminances,” Vision Res. 27, 1845-1858 (1987).
[CrossRef] [PubMed]

1986 (1)

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

1985 (2)

J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62, 864-869 (1985).
[PubMed]

A. M. Norcia and C. W. Tyler, “Spatial frequency sweep VEP: visual acuity during the first year of life,” Vision Res. 25, 1399-1408 (1985).
[CrossRef] [PubMed]

1982 (5)

J. G. Sivak and T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997-1003 (1982).
[CrossRef] [PubMed]

A. L. Lewis, M. Katz, and C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

C. Ware, “Human axial chromatic aberration found not to decline with age,” Graefe's Arch. Clin. Exp. Ophthalmol. 218, 39-41 (1982).
[CrossRef]

G. Smith, “Angular diameter of defocus blur discs,” Am. J. Optom. Physiol. Opt. 59, 885-889 (1982).
[PubMed]

J. S. Werner, “Development of scotopic sensitivity and the absorption spectrum of the human ocular media,” J. Opt. Soc. Am. 72, 247-258 (1982).
[CrossRef] [PubMed]

1981 (1)

1980 (2)

C. W. Bobier and J. G. Sivak, “Chromoretinoscopy and its instrumentation,” Am. J. Optom. Physiol. Opt. 57, 106-108 (1980).
[PubMed]

M. S. Banks, “The development of visual accommodation during early infancy,” Child Dev. 51, 646-666 (1980).
[CrossRef] [PubMed]

1978 (3)

J. G. Sivak and C. W. Bobier, “Accommodation and chromatic aberration in young children,” Invest. Ophthalmol. Visual Sci. 17, 705-709 (1978).

C. W. Bobier and J. G. Sivak, “Chromoretinoscopy,” Vision Res. 18, 247-250 (1978).
[CrossRef] [PubMed]

V. Dobson and D. Y. Teller, “Visual acuity in human infants: a review and comparison of behavioral and electrophysiological studies,” Vision Res. 18, 1469-1483 (1978).
[CrossRef] [PubMed]

1976 (2)

M. S. Banks and P. Salapatek, “Contrast sensitivity function of the infant visual system,” Vision Res. 16, 867-869 (1976).
[CrossRef] [PubMed]

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999-1005 (1976).
[CrossRef] [PubMed]

1973 (1)

M. Millodot and J. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Br. J. Physiol. Opt. 28, 169-174 (1973).
[PubMed]

1971 (1)

J. S. Larsen, “The sagittal growth of the eye. IV. Ultrasonic measurement of the axial length of the eye from birth to puberty,” Acta Ophthalmol. 49, 873-886 (1971).

1970 (1)

M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168, 605-606 (1970).
[CrossRef] [PubMed]

1962 (1)

T. N. Cornsweet, “The staircase-method in psychophysics,” Am. J. Psychol. 75, 485-491 (1962).
[CrossRef] [PubMed]

1957 (1)

1956 (1)

G. G. Heath, “Components of accommodation,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 569-579 (1956).
[PubMed]

1951 (1)

E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthamol. 35, 381-393 (1951).
[CrossRef]

1947 (1)

Abramov, I.

P. M. Riddell, L. Hainline, and I. Abramov, “Calibration of the Hirschberg test in human infants,” Invest. Ophthalmol. Visual Sci. 35, 538-543 (1994).

Adrian, W. K.

J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62, 864-869 (1985).
[PubMed]

Aggarwala, K. R.

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995).
[CrossRef]

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

Ankrum, C.

Artal, P.

Atchison, D. A.

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal Optometer,” Optom. Vision Sci. 72, 279-284 (1995).
[CrossRef]

Banks, M. S.

T. R. Candy, J. A. Crowell, and M. S. Banks, “Optical, receptoral, and retinal constraints on foveal and peripheral vision in the human neonate,” Vision Res. 38, 3857-3870 (1998).
[CrossRef]

M. S. Banks and P. J. Bennett, “Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates,” J. Opt. Soc. Am. A 5, 2059-2079 (1988).
[CrossRef] [PubMed]

M. S. Banks, “The development of visual accommodation during early infancy,” Child Dev. 51, 646-666 (1980).
[CrossRef] [PubMed]

M. S. Banks and P. Salapatek, “Contrast sensitivity function of the infant visual system,” Vision Res. 16, 867-869 (1976).
[CrossRef] [PubMed]

P. Salapatek and M. S. Banks, “Infant sensory assessment: vision,” in Communicative and Cognitive Abilities: Early Behavioral Assessment, F.D.Minifie and L.L.Lloyd, eds. (University Park Press, 1978).

Bedford, R. E.

Bennett, P. J.

Bharadwaj, S. R.

J. Wang, S. R. Bharadwaj, and T. R. Candy, “The monocular threshold stimulus for accommodation in human infants,” Invest. Ophthalmol. Visual Sci. Suppl. 48, 47 (2007).

Bieber, M. L.

M. L. Bieber, K. Knoblauch, and J. S. Werner, “M- and L-cones in early infancy: II. Action spectra at 8 weeks of age,” Vision Res. 38, 1765-1773 (1998).
[CrossRef] [PubMed]

Bobier, C. W.

C. W. Bobier and J. G. Sivak, “Chromoretinoscopy and its instrumentation,” Am. J. Optom. Physiol. Opt. 57, 106-108 (1980).
[PubMed]

C. W. Bobier and J. G. Sivak, “Chromoretinoscopy,” Vision Res. 18, 247-250 (1978).
[CrossRef] [PubMed]

J. G. Sivak and C. W. Bobier, “Accommodation and chromatic aberration in young children,” Invest. Ophthalmol. Visual Sci. 17, 705-709 (1978).

Boettner, E. A.

E. A. Boettner and J. R. Wolter, “Transmission of the Ocular Media,” Air Force Technical Documentary Report No. MRL-TDR-62-34 (1962).

Bone, R. A.

R. A. Bone, J. T. Landrum, L. Fernandez, and S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Visual Sci. 29, 843-849 (1988).

Bradley, A.

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal Optometer,” Optom. Vision Sci. 72, 279-284 (1995).
[CrossRef]

L. N. Thibos, M. Ye, X. X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594-3600 (1992).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599-607 (1991).
[CrossRef]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5, 2087-2092 (1988).
[CrossRef] [PubMed]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

Brown, A. M.

Burns, S. A.

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of subretinal structures in the human ocular fundus,” Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

Candy, T. R.

J. Wang, S. R. Bharadwaj, and T. R. Candy, “The monocular threshold stimulus for accommodation in human infants,” Invest. Ophthalmol. Visual Sci. Suppl. 48, 47 (2007).

G. M. Tondel and T. R. Candy, “Human infants' accommodation responses to dynamic stimuli,” Invest. Ophthalmol. Visual Sci. 48, 949-956 (2007).
[CrossRef]

J. Wang and T. R. Candy, “The threshold stimulus for accommodation in human infants,” Invest. Ophthalmol. Visual Sci. Suppl. 47, 271 (2006).

J. Wang and T. R. Candy, “Higher order monochromatic aberrations of the human infant eye,” J. Vision 5, 543-555 (2005).
[CrossRef]

T. R. Candy, J. A. Crowell, and M. S. Banks, “Optical, receptoral, and retinal constraints on foveal and peripheral vision in the human neonate,” Vision Res. 38, 3857-3870 (1998).
[CrossRef]

Chan, C. D.

G. Smith, R. J. Jacobs, and C. D. Chan, “Effect of defocus on visual acuity as measured by source and observer methods,” Optom. Vision Sci. 66, 430-435 (1989).
[CrossRef]

Charman, W. N.

A. Morrell, H. D. Whitefoot, and W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11, 385-390 (1991).
[CrossRef] [PubMed]

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999-1005 (1976).
[CrossRef] [PubMed]

Chen, L.

Clavadetscher, J. E.

Cooper, D. P.

D. P. Cooper and P. L. Pease, “Longitudinal chromatic aberration of the human eye and wavelength in focus,” Am. J. Optom. Physiol. Opt. 65, 99-107 (1988).
[PubMed]

Cornsweet, T. N.

T. N. Cornsweet, “The staircase-method in psychophysics,” Am. J. Psychol. 75, 485-491 (1962).
[CrossRef] [PubMed]

Crowell, J. A.

T. R. Candy, J. A. Crowell, and M. S. Banks, “Optical, receptoral, and retinal constraints on foveal and peripheral vision in the human neonate,” Vision Res. 38, 3857-3870 (1998).
[CrossRef]

Dainty, C.

Decker, K. E.

Delori, F. C.

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of subretinal structures in the human ocular fundus,” Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

Dick, K.

C. F. Wildsoet, H. C. Howland, S. Falconer, and K. Dick, “Chromatic aberration and accommodation: their role in emmetropization in the chick,” Vision Res. 33, 1593-1603 (1993).
[CrossRef] [PubMed]

Dobson, V.

A. M. Brown, V. Dobson, and J. Maier, “Visual acuity of human infants at scotopic, mesopic and photopic luminances,” Vision Res. 27, 1845-1858 (1987).
[CrossRef] [PubMed]

V. Dobson and D. Y. Teller, “Visual acuity in human infants: a review and comparison of behavioral and electrophysiological studies,” Vision Res. 18, 1469-1483 (1978).
[CrossRef] [PubMed]

Drexler, W.

E. J. Fernandez, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502-507 (2001); erratum in Nat. Med. 7, 636 (2001).
[CrossRef] [PubMed]

Elsner, A. E.

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of subretinal structures in the human ocular fundus,” Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

Emsley, H. H.

H. H. Emsley, Optics of Vision, Vol. 1, Visual Optics (Hatton Press, 1963).

Falconer, S.

C. F. Wildsoet, H. C. Howland, S. Falconer, and K. Dick, “Chromatic aberration and accommodation: their role in emmetropization in the chick,” Vision Res. 33, 1593-1603 (1993).
[CrossRef] [PubMed]

Fernandez, E. J.

Fernandez, L.

R. A. Bone, J. T. Landrum, L. Fernandez, and S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Visual Sci. 29, 843-849 (1988).

Fincham, E. F.

E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthamol. 35, 381-393 (1951).
[CrossRef]

Fujimoto, J. G.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502-507 (2001); erratum in Nat. Med. 7, 636 (2001).
[CrossRef] [PubMed]

Fulton, A. B.

D. L. Mayer, R. M. Hansen, B. D. Moore, S. Kim, and A. B. Fulton, “Cycloplegic refractions in healthy children aged 1 through 48 months,” Arch. Ophthalmol. (Chicago) 119, 1625-1628 (2001).

A. B. Fulton and R. M. Hansen, “The development of scotopic sensitivity,” Invest. Ophthalmol. Visual Sci. 41, 1588-1596 (2000).

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502-507 (2001); erratum in Nat. Med. 7, 636 (2001).
[CrossRef] [PubMed]

Glickstein, M.

M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168, 605-606 (1970).
[CrossRef] [PubMed]

Griffin, D. R.

Hainline, L.

P. M. Riddell, L. Hainline, and I. Abramov, “Calibration of the Hirschberg test in human infants,” Invest. Ophthalmol. Visual Sci. 35, 538-543 (1994).

Hamer, R. D.

A. M. Norcia, C. W. Tyler, and R. D. Hamer, “Development of contrast sensitivity in the human infant,” Vision Res. 30, 1475-1486 (1990).
[CrossRef] [PubMed]

Hampson, K. M.

Hansen, R. M.

D. L. Mayer, R. M. Hansen, B. D. Moore, S. Kim, and A. B. Fulton, “Cycloplegic refractions in healthy children aged 1 through 48 months,” Arch. Ophthalmol. (Chicago) 119, 1625-1628 (2001).

A. B. Fulton and R. M. Hansen, “The development of scotopic sensitivity,” Invest. Ophthalmol. Visual Sci. 41, 1588-1596 (2000).

Heath, G. G.

G. G. Heath, “Components of accommodation,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 569-579 (1956).
[PubMed]

Hermann, B.

Hofer, H.

Howarth, P. A.

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5, 2087-2092 (1988).
[CrossRef] [PubMed]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

Howland, H. C.

C. MacLachlan and H. C. Howland, “Normal values and standard deviations for pupil diameter and interpupillary distance in subjects aged 1 monthto19 years,” Ophthalmic Physiol. Opt. 22, 175-182 (2002).
[CrossRef] [PubMed]

C. F. Wildsoet, H. C. Howland, S. Falconer, and K. Dick, “Chromatic aberration and accommodation: their role in emmetropization in the chick,” Vision Res. 33, 1593-1603 (1993).
[CrossRef] [PubMed]

Ivanoff, A.

A. Ivanoff, “Les aberrations de l'oeil leur rôle dans l'accommodation,” Revue d'Optique Théorique et Instrumentale (Durand, Paris, 1953), pp. 43-44.

Jacobs, R. J.

G. Smith, R. J. Jacobs, and C. D. Chan, “Effect of defocus on visual acuity as measured by source and observer methods,” Optom. Vision Sci. 66, 430-435 (1989).
[CrossRef]

Jennings, J. A.

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999-1005 (1976).
[CrossRef] [PubMed]

Kartner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502-507 (2001); erratum in Nat. Med. 7, 636 (2001).
[CrossRef] [PubMed]

Katz, M.

A. L. Lewis, M. Katz, and C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

Kim, S.

D. L. Mayer, R. M. Hansen, B. D. Moore, S. Kim, and A. B. Fulton, “Cycloplegic refractions in healthy children aged 1 through 48 months,” Arch. Ophthalmol. (Chicago) 119, 1625-1628 (2001).

Knoblauch, K.

M. L. Bieber, K. Knoblauch, and J. S. Werner, “M- and L-cones in early infancy: II. Action spectra at 8 weeks of age,” Vision Res. 38, 1765-1773 (1998).
[CrossRef] [PubMed]

Kruger, P. B.

F. J. Rucker and P. B. Kruger, “Cone contributions to signals for accommodation and the relationship to refractive error,” Vision Res. 46, 3079-3089 (2006).
[CrossRef] [PubMed]

L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23, 1-8 (2006).
[CrossRef]

F. J. Rucker and P. B. Kruger, “Accommodation responses to stimuli in cone contrast space,” Vision Res. 44, 2931-2944 (2004).
[CrossRef] [PubMed]

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995).
[CrossRef]

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

Landrum, J. T.

R. A. Bone, J. T. Landrum, L. Fernandez, and S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Visual Sci. 29, 843-849 (1988).

Larsen, J. S.

J. S. Larsen, “The sagittal growth of the eye. IV. Ultrasonic measurement of the axial length of the eye from birth to puberty,” Acta Ophthalmol. 49, 873-886 (1971).

Lewis, A. L.

A. L. Lewis, M. Katz, and C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

Losada, M. A.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513-522 (1998).
[CrossRef] [PubMed]

MacLachlan, C.

C. MacLachlan and H. C. Howland, “Normal values and standard deviations for pupil diameter and interpupillary distance in subjects aged 1 monthto19 years,” Ophthalmic Physiol. Opt. 22, 175-182 (2002).
[CrossRef] [PubMed]

Maier, J.

A. M. Brown, V. Dobson, and J. Maier, “Visual acuity of human infants at scotopic, mesopic and photopic luminances,” Vision Res. 27, 1845-1858 (1987).
[CrossRef] [PubMed]

Mallen, E. A.

Mandelman, T.

J. G. Sivak and T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997-1003 (1982).
[CrossRef] [PubMed]

Mathews, S.

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995).
[CrossRef]

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

Mayer, D. L.

D. L. Mayer, R. M. Hansen, B. D. Moore, S. Kim, and A. B. Fulton, “Cycloplegic refractions in healthy children aged 1 through 48 months,” Arch. Ophthalmol. (Chicago) 119, 1625-1628 (2001).

Millodot, M.

M. Millodot and J. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Br. J. Physiol. Opt. 28, 169-174 (1973).
[PubMed]

M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168, 605-606 (1970).
[CrossRef] [PubMed]

Moore, B. D.

D. L. Mayer, R. M. Hansen, B. D. Moore, S. Kim, and A. B. Fulton, “Cycloplegic refractions in healthy children aged 1 through 48 months,” Arch. Ophthalmol. (Chicago) 119, 1625-1628 (2001).

Mordi, J. A.

J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62, 864-869 (1985).
[PubMed]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502-507 (2001); erratum in Nat. Med. 7, 636 (2001).
[CrossRef] [PubMed]

Morrell, A.

A. Morrell, H. D. Whitefoot, and W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11, 385-390 (1991).
[CrossRef] [PubMed]

Mutti, D. O.

I. C. Wood, D. O. Mutti, and K. Zadnik, “Crystalline lens parameters in infancy,” Ophthalmic Physiol. Opt. 16, 310-317 (1996).
[CrossRef] [PubMed]

Navarro, R.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513-522 (1998).
[CrossRef] [PubMed]

R. Navarro, P. Artal, and D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201-212 (1993).
[CrossRef] [PubMed]

Norcia, A. M.

A. M. Norcia, C. W. Tyler, and R. D. Hamer, “Development of contrast sensitivity in the human infant,” Vision Res. 30, 1475-1486 (1990).
[CrossRef] [PubMed]

A. M. Norcia and C. W. Tyler, “Spatial frequency sweep VEP: visual acuity during the first year of life,” Vision Res. 25, 1399-1408 (1985).
[CrossRef] [PubMed]

Nowbotsing, S.

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995).
[CrossRef]

Oehrlein, C.

A. L. Lewis, M. Katz, and C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

Paterson, C.

Pease, P. L.

D. P. Cooper and P. L. Pease, “Longitudinal chromatic aberration of the human eye and wavelength in focus,” Am. J. Optom. Physiol. Opt. 65, 99-107 (1988).
[PubMed]

Powell, L.

Prieto, P.

Riddell, P. M.

P. M. Riddell, L. Hainline, and I. Abramov, “Calibration of the Hirschberg test in human infants,” Invest. Ophthalmol. Visual Sci. 35, 538-543 (1994).

Rohrer, B.

B. Rohrer, F. Schaeffel, and E. Zrenner, “Longitudinal chromatic aberration and emmetropization: results from the chicken eye,” J. Physiol. (London) 449, 363-376 (1992).

Roorda, A.

Rucker, F. J.

F. J. Rucker and P. B. Kruger, “Cone contributions to signals for accommodation and the relationship to refractive error,” Vision Res. 46, 3079-3089 (2006).
[CrossRef] [PubMed]

F. J. Rucker and P. B. Kruger, “Accommodation responses to stimuli in cone contrast space,” Vision Res. 44, 2931-2944 (2004).
[CrossRef] [PubMed]

Rynders, M. C.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513-522 (1998).
[CrossRef] [PubMed]

Salapatek, P.

M. S. Banks and P. Salapatek, “Contrast sensitivity function of the infant visual system,” Vision Res. 16, 867-869 (1976).
[CrossRef] [PubMed]

P. Salapatek and M. S. Banks, “Infant sensory assessment: vision,” in Communicative and Cognitive Abilities: Early Behavioral Assessment, F.D.Minifie and L.L.Lloyd, eds. (University Park Press, 1978).

Sanchez, N.

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

Saunders, K. J.

K. J. Saunders, J. M. Woodhouse, and C. A. Westall, “Emmetropisation in human infancy: rate of change is related to initial refractive error,” Vision Res. 35, 1325-1328 (1995).
[CrossRef] [PubMed]

Schaeffel, F.

B. Rohrer, F. Schaeffel, and E. Zrenner, “Longitudinal chromatic aberration and emmetropization: results from the chicken eye,” J. Physiol. (London) 449, 363-376 (1992).

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502-507 (2001); erratum in Nat. Med. 7, 636 (2001).
[CrossRef] [PubMed]

Singer, B.

Sivak, J.

M. Millodot and J. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Br. J. Physiol. Opt. 28, 169-174 (1973).
[PubMed]

Sivak, J. G.

J. G. Sivak and T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997-1003 (1982).
[CrossRef] [PubMed]

C. W. Bobier and J. G. Sivak, “Chromoretinoscopy and its instrumentation,” Am. J. Optom. Physiol. Opt. 57, 106-108 (1980).
[PubMed]

C. W. Bobier and J. G. Sivak, “Chromoretinoscopy,” Vision Res. 18, 247-250 (1978).
[CrossRef] [PubMed]

J. G. Sivak and C. W. Bobier, “Accommodation and chromatic aberration in young children,” Invest. Ophthalmol. Visual Sci. 17, 705-709 (1978).

Smith, G.

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal Optometer,” Optom. Vision Sci. 72, 279-284 (1995).
[CrossRef]

G. Smith, R. J. Jacobs, and C. D. Chan, “Effect of defocus on visual acuity as measured by source and observer methods,” Optom. Vision Sci. 66, 430-435 (1989).
[CrossRef]

G. Smith, “Angular diameter of defocus blur discs,” Am. J. Optom. Physiol. Opt. 59, 885-889 (1982).
[PubMed]

Still, D. L.

Tarsis, S. L.

R. A. Bone, J. T. Landrum, L. Fernandez, and S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Visual Sci. 29, 843-849 (1988).

Teller, D. Y.

D. Y. Teller, “First glances: the vision of infants. the Friedenwald lecture,” Invest. Ophthalmol. Visual Sci. 38, 2183-2203 (1997).

J. E. Clavadetscher, A. M. Brown, C. Ankrum, and D. Y. Teller, “Spectral sensitivity and chromatic discriminations in 3- and 7-week-old human infants,” J. Opt. Soc. Am. A 5, 2093-2105 (1988).
[CrossRef] [PubMed]

V. Dobson and D. Y. Teller, “Visual acuity in human infants: a review and comparison of behavioral and electrophysiological studies,” Vision Res. 18, 1469-1483 (1978).
[CrossRef] [PubMed]

Thibos, L. N.

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal Optometer,” Optom. Vision Sci. 72, 279-284 (1995).
[CrossRef]

L. N. Thibos, M. Ye, X. X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594-3600 (1992).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599-607 (1991).
[CrossRef]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5, 2087-2092 (1988).
[CrossRef] [PubMed]

Tondel, G. M.

G. M. Tondel and T. R. Candy, “Human infants' accommodation responses to dynamic stimuli,” Invest. Ophthalmol. Visual Sci. 48, 949-956 (2007).
[CrossRef]

Tyler, C. W.

A. M. Norcia, C. W. Tyler, and R. D. Hamer, “Development of contrast sensitivity in the human infant,” Vision Res. 30, 1475-1486 (1990).
[CrossRef] [PubMed]

A. M. Norcia and C. W. Tyler, “Spatial frequency sweep VEP: visual acuity during the first year of life,” Vision Res. 25, 1399-1408 (1985).
[CrossRef] [PubMed]

Unterhuber, A.

Wald, G.

Wallman, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447-468 (2004).
[CrossRef] [PubMed]

Wang, J.

J. Wang, S. R. Bharadwaj, and T. R. Candy, “The monocular threshold stimulus for accommodation in human infants,” Invest. Ophthalmol. Visual Sci. Suppl. 48, 47 (2007).

J. Wang and T. R. Candy, “The threshold stimulus for accommodation in human infants,” Invest. Ophthalmol. Visual Sci. Suppl. 47, 271 (2006).

J. Wang and T. R. Candy, “Higher order monochromatic aberrations of the human infant eye,” J. Vision 5, 543-555 (2005).
[CrossRef]

Ware, C.

C. Ware, “Human axial chromatic aberration found not to decline with age,” Graefe's Arch. Clin. Exp. Ophthalmol. 218, 39-41 (1982).
[CrossRef]

Weiter, J. J.

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of subretinal structures in the human ocular fundus,” Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

Werner, J. S.

M. L. Bieber, K. Knoblauch, and J. S. Werner, “M- and L-cones in early infancy: II. Action spectra at 8 weeks of age,” Vision Res. 38, 1765-1773 (1998).
[CrossRef] [PubMed]

J. S. Werner, “Development of scotopic sensitivity and the absorption spectrum of the human ocular media,” J. Opt. Soc. Am. 72, 247-258 (1982).
[CrossRef] [PubMed]

Westall, C. A.

K. J. Saunders, J. M. Woodhouse, and C. A. Westall, “Emmetropisation in human infancy: rate of change is related to initial refractive error,” Vision Res. 35, 1325-1328 (1995).
[CrossRef] [PubMed]

Whitefoot, H. D.

A. Morrell, H. D. Whitefoot, and W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11, 385-390 (1991).
[CrossRef] [PubMed]

Wildsoet, C. F.

C. F. Wildsoet, H. C. Howland, S. Falconer, and K. Dick, “Chromatic aberration and accommodation: their role in emmetropization in the chick,” Vision Res. 33, 1593-1603 (1993).
[CrossRef] [PubMed]

Williams, D. R.

Wilson, B. J.

Wilson, H. R.

H. R. Wilson, “Development of spatiotemporal mechanisms in infant vision,” Vision Res. 28, 611-628 (1988).
[CrossRef] [PubMed]

Winawer, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447-468 (2004).
[CrossRef] [PubMed]

Wolter, J. R.

E. A. Boettner and J. R. Wolter, “Transmission of the Ocular Media,” Air Force Technical Documentary Report No. MRL-TDR-62-34 (1962).

Wood, I. C.

I. C. Wood, D. O. Mutti, and K. Zadnik, “Crystalline lens parameters in infancy,” Ophthalmic Physiol. Opt. 16, 310-317 (1996).
[CrossRef] [PubMed]

Woodhouse, J. M.

K. J. Saunders, J. M. Woodhouse, and C. A. Westall, “Emmetropisation in human infancy: rate of change is related to initial refractive error,” Vision Res. 35, 1325-1328 (1995).
[CrossRef] [PubMed]

Wyszecki, G.

Ye, M.

Zadnik, K.

I. C. Wood, D. O. Mutti, and K. Zadnik, “Crystalline lens parameters in infancy,” Ophthalmic Physiol. Opt. 16, 310-317 (1996).
[CrossRef] [PubMed]

Zhang, X. X.

Zrenner, E.

B. Rohrer, F. Schaeffel, and E. Zrenner, “Longitudinal chromatic aberration and emmetropization: results from the chicken eye,” J. Physiol. (London) 449, 363-376 (1992).

Acta Ophthalmol. (1)

J. S. Larsen, “The sagittal growth of the eye. IV. Ultrasonic measurement of the axial length of the eye from birth to puberty,” Acta Ophthalmol. 49, 873-886 (1971).

Am. J. Optom. Arch. Am. Acad. Optom. (1)

G. G. Heath, “Components of accommodation,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 569-579 (1956).
[PubMed]

Am. J. Optom. Physiol. Opt. (5)

C. W. Bobier and J. G. Sivak, “Chromoretinoscopy and its instrumentation,” Am. J. Optom. Physiol. Opt. 57, 106-108 (1980).
[PubMed]

G. Smith, “Angular diameter of defocus blur discs,” Am. J. Optom. Physiol. Opt. 59, 885-889 (1982).
[PubMed]

D. P. Cooper and P. L. Pease, “Longitudinal chromatic aberration of the human eye and wavelength in focus,” Am. J. Optom. Physiol. Opt. 65, 99-107 (1988).
[PubMed]

A. L. Lewis, M. Katz, and C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62, 864-869 (1985).
[PubMed]

Am. J. Psychol. (1)

T. N. Cornsweet, “The staircase-method in psychophysics,” Am. J. Psychol. 75, 485-491 (1962).
[CrossRef] [PubMed]

Appl. Opt. (2)

Arch. Ophthalmol. (Chicago) (1)

D. L. Mayer, R. M. Hansen, B. D. Moore, S. Kim, and A. B. Fulton, “Cycloplegic refractions in healthy children aged 1 through 48 months,” Arch. Ophthalmol. (Chicago) 119, 1625-1628 (2001).

Br. J. Ophthamol. (1)

E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthamol. 35, 381-393 (1951).
[CrossRef]

Br. J. Physiol. Opt. (1)

M. Millodot and J. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Br. J. Physiol. Opt. 28, 169-174 (1973).
[PubMed]

Child Dev. (1)

M. S. Banks, “The development of visual accommodation during early infancy,” Child Dev. 51, 646-666 (1980).
[CrossRef] [PubMed]

Graefe's Arch. Clin. Exp. Ophthalmol. (1)

C. Ware, “Human axial chromatic aberration found not to decline with age,” Graefe's Arch. Clin. Exp. Ophthalmol. 218, 39-41 (1982).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (6)

D. Y. Teller, “First glances: the vision of infants. the Friedenwald lecture,” Invest. Ophthalmol. Visual Sci. 38, 2183-2203 (1997).

P. M. Riddell, L. Hainline, and I. Abramov, “Calibration of the Hirschberg test in human infants,” Invest. Ophthalmol. Visual Sci. 35, 538-543 (1994).

A. B. Fulton and R. M. Hansen, “The development of scotopic sensitivity,” Invest. Ophthalmol. Visual Sci. 41, 1588-1596 (2000).

R. A. Bone, J. T. Landrum, L. Fernandez, and S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Visual Sci. 29, 843-849 (1988).

J. G. Sivak and C. W. Bobier, “Accommodation and chromatic aberration in young children,” Invest. Ophthalmol. Visual Sci. 17, 705-709 (1978).

G. M. Tondel and T. R. Candy, “Human infants' accommodation responses to dynamic stimuli,” Invest. Ophthalmol. Visual Sci. 48, 949-956 (2007).
[CrossRef]

Invest. Ophthalmol. Visual Sci. Suppl. (2)

J. Wang and T. R. Candy, “The threshold stimulus for accommodation in human infants,” Invest. Ophthalmol. Visual Sci. Suppl. 47, 271 (2006).

J. Wang, S. R. Bharadwaj, and T. R. Candy, “The monocular threshold stimulus for accommodation in human infants,” Invest. Ophthalmol. Visual Sci. Suppl. 48, 47 (2007).

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (8)

M. S. Banks and P. J. Bennett, “Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates,” J. Opt. Soc. Am. A 5, 2059-2079 (1988).
[CrossRef] [PubMed]

J. E. Clavadetscher, A. M. Brown, C. Ankrum, and D. Y. Teller, “Spectral sensitivity and chromatic discriminations in 3- and 7-week-old human infants,” J. Opt. Soc. Am. A 5, 2093-2105 (1988).
[CrossRef] [PubMed]

B. J. Wilson, K. E. Decker, and A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” J. Opt. Soc. Am. A 19, 833-839 (2002).
[CrossRef]

E. J. Fernandez and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22, 1732-1738 (2005).
[CrossRef]

K. M. Hampson, C. Paterson, C. Dainty, and E. A. Mallen, “Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control,” J. Opt. Soc. Am. A 23, 1082-1088 (2006).
[CrossRef]

L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23, 1-8 (2006).
[CrossRef]

R. Navarro, P. Artal, and D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201-212 (1993).
[CrossRef] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5, 2087-2092 (1988).
[CrossRef] [PubMed]

J. Physiol. (London) (1)

B. Rohrer, F. Schaeffel, and E. Zrenner, “Longitudinal chromatic aberration and emmetropization: results from the chicken eye,” J. Physiol. (London) 449, 363-376 (1992).

J. Vision (1)

J. Wang and T. R. Candy, “Higher order monochromatic aberrations of the human infant eye,” J. Vision 5, 543-555 (2005).
[CrossRef]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502-507 (2001); erratum in Nat. Med. 7, 636 (2001).
[CrossRef] [PubMed]

Neuron (1)

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447-468 (2004).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (3)

C. MacLachlan and H. C. Howland, “Normal values and standard deviations for pupil diameter and interpupillary distance in subjects aged 1 monthto19 years,” Ophthalmic Physiol. Opt. 22, 175-182 (2002).
[CrossRef] [PubMed]

A. Morrell, H. D. Whitefoot, and W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11, 385-390 (1991).
[CrossRef] [PubMed]

I. C. Wood, D. O. Mutti, and K. Zadnik, “Crystalline lens parameters in infancy,” Ophthalmic Physiol. Opt. 16, 310-317 (1996).
[CrossRef] [PubMed]

Opt. Express (1)

Optom. Vision Sci. (4)

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599-607 (1991).
[CrossRef]

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995).
[CrossRef]

G. Smith, R. J. Jacobs, and C. D. Chan, “Effect of defocus on visual acuity as measured by source and observer methods,” Optom. Vision Sci. 66, 430-435 (1989).
[CrossRef]

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal Optometer,” Optom. Vision Sci. 72, 279-284 (1995).
[CrossRef]

Science (1)

M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168, 605-606 (1970).
[CrossRef] [PubMed]

Vision Res. (19)

M. L. Bieber, K. Knoblauch, and J. S. Werner, “M- and L-cones in early infancy: II. Action spectra at 8 weeks of age,” Vision Res. 38, 1765-1773 (1998).
[CrossRef] [PubMed]

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513-522 (1998).
[CrossRef] [PubMed]

T. R. Candy, J. A. Crowell, and M. S. Banks, “Optical, receptoral, and retinal constraints on foveal and peripheral vision in the human neonate,” Vision Res. 38, 3857-3870 (1998).
[CrossRef]

K. J. Saunders, J. M. Woodhouse, and C. A. Westall, “Emmetropisation in human infancy: rate of change is related to initial refractive error,” Vision Res. 35, 1325-1328 (1995).
[CrossRef] [PubMed]

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of subretinal structures in the human ocular fundus,” Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

F. J. Rucker and P. B. Kruger, “Cone contributions to signals for accommodation and the relationship to refractive error,” Vision Res. 46, 3079-3089 (2006).
[CrossRef] [PubMed]

C. F. Wildsoet, H. C. Howland, S. Falconer, and K. Dick, “Chromatic aberration and accommodation: their role in emmetropization in the chick,” Vision Res. 33, 1593-1603 (1993).
[CrossRef] [PubMed]

H. R. Wilson, “Development of spatiotemporal mechanisms in infant vision,” Vision Res. 28, 611-628 (1988).
[CrossRef] [PubMed]

A. M. Brown, V. Dobson, and J. Maier, “Visual acuity of human infants at scotopic, mesopic and photopic luminances,” Vision Res. 27, 1845-1858 (1987).
[CrossRef] [PubMed]

F. J. Rucker and P. B. Kruger, “Accommodation responses to stimuli in cone contrast space,” Vision Res. 44, 2931-2944 (2004).
[CrossRef] [PubMed]

J. G. Sivak and T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997-1003 (1982).
[CrossRef] [PubMed]

V. Dobson and D. Y. Teller, “Visual acuity in human infants: a review and comparison of behavioral and electrophysiological studies,” Vision Res. 18, 1469-1483 (1978).
[CrossRef] [PubMed]

A. M. Norcia and C. W. Tyler, “Spatial frequency sweep VEP: visual acuity during the first year of life,” Vision Res. 25, 1399-1408 (1985).
[CrossRef] [PubMed]

A. M. Norcia, C. W. Tyler, and R. D. Hamer, “Development of contrast sensitivity in the human infant,” Vision Res. 30, 1475-1486 (1990).
[CrossRef] [PubMed]

M. S. Banks and P. Salapatek, “Contrast sensitivity function of the infant visual system,” Vision Res. 16, 867-869 (1976).
[CrossRef] [PubMed]

C. W. Bobier and J. G. Sivak, “Chromoretinoscopy,” Vision Res. 18, 247-250 (1978).
[CrossRef] [PubMed]

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999-1005 (1976).
[CrossRef] [PubMed]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

Other (5)

H. H. Emsley, Optics of Vision, Vol. 1, Visual Optics (Hatton Press, 1963).

A. Ivanoff, “Les aberrations de l'oeil leur rôle dans l'accommodation,” Revue d'Optique Théorique et Instrumentale (Durand, Paris, 1953), pp. 43-44.

ANSI-Z136.1, American National Standard for Safe Use of Lasers (Laser Institute of America, Orlando, 2000).

P. Salapatek and M. S. Banks, “Infant sensory assessment: vision,” in Communicative and Cognitive Abilities: Early Behavioral Assessment, F.D.Minifie and L.L.Lloyd, eds. (University Park Press, 1978).

E. A. Boettner and J. R. Wolter, “Transmission of the Ocular Media,” Air Force Technical Documentary Report No. MRL-TDR-62-34 (1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of longitudinal chromatic aberration (LCA) and the effects of myopic and hyperopic defocus. Polychromatic light (p) reaches the eye and is dispersed into its component wavelengths. The power of the eye is greater for short (b) than the middle (g) and long (r) wavelengths. A. The middle (g) wavelengths are focused at the retina. B. An overpowered, myopic eye with the long (r) wavelengths in best focus. C. an underpowered, hyperopic eye with short (b) wavelengths in best focus.

Fig. 2
Fig. 2

Published measurements of adult ocular chromatic aberration, compared with the chromatic-eye model of Thibos et al. [16] (based on their Fig. 6). The data were normalized to the defocus measured at 589 nm .

Fig. 3
Fig. 3

Schematic illustration of the chromatic retinoscope used to collect data from adults and infants, demonstrating the illumination path. The LCA of the lens in the retinoscope head changes the position of the secondary light source with wavelength. This change in position changes only the speed of the reflex motion rather than its direction and therefore does not influence the measurement of the eye’s LCA. The LCA of the trial lenses used to assess the reflex was less than 0.1 D between 472 and 652 nm , for the lenses between + 6 D and 5 D used to make the measurements. The radiant exposure levels for all wavelengths used in this experiment arriving at the cornea were also measured and confirmed to be at least 50 times lower than the appropriate ANSI safety standard when the light source was turned to its highest setting [37]. The LCA measurements were collected from subjects with the light source at the lowest setting that provided reliable data, and so the highest setting was never used during data collection.

Fig. 4
Fig. 4

Schematic illustration of a potential artifact in the chromatic retinoscopy technique. Although the full LCA is defined by the distance between the short (blue) and long (red) wavelength planes of focus, if the short and long wavelengths are reflected from different planes during retinoscopy (represented by the points b and r, respectively), the sum of the dioptric distances D b and D r will not equal the LCA value (e.g. [30]).

Fig. 5
Fig. 5

Relative spectral distributions of the broadband (white) light source used in the chromatic retinoscope and the clinical retinoscope, as measured with a spectroradiometer (Photo Research Inc). The data have been normalized to their peak value, which was seven times higher for the chromatic than for the clinical retinoscope. Neither of these sources was used at its maximum setting during the LCA data collection from subjects.

Fig. 6
Fig. 6

Relative defocus as a function of wavelength as measured with the chromatic retinoscope. Eleven individual infant (triangles) and adult (circles) functions are plotted, with the mean function for each group.

Fig. 7
Fig. 7

Relative defocus as a function of wavelength as measured with the subjective Badal optometer. Eleven individual adult functions are plotted, with the mean function for the group.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

LCA = F R F B = n R n B r ,
b = P * D

Metrics