Abstract

A coherent confocal microscope is proposed as a means to fully characterize the elastic scattering properties of a nanoparticle as a function of wavelength. Using a high numerical aperture lens, two-dimensional scanning, and a simple vector-beam shaper, the rank-2 polarizability tensor is estimated from a single confocal image. A method for computationally efficient data processing is described, and numerical simulations show that this algorithm is robust to noise and uncertainty in the focal plane position. The proposed method is a generalization of techniques that provide an estimate of a limited set of scattering parameters, such as a single orientation angle for rodlike particles. The measurement of the polarizability obviates the need for a priori assumptions about the nanoparticle.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription