Abstract

Customized optical filtering and light-dependent neural filtering were implemented in an ideal-observer model for an L-alternative forced-choice visual task. The model was applied to a contrast threshold visual task with adaptive optics correction of ocular higher-order (HO) aberrations under different light regimes, for which experimental data have previously been obtained (J. Mod. Opt. 55, 791, 2008) . A separability measure was used to assess the model-observer performance and to investigate the joint effect of optical and neural filtering. The numerical results were consistent with the experimental data in the assessment of the effect of HO aberrations as a function of light level.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266-275 (2002).
    [CrossRef]
  2. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634-S638 (2002).
    [PubMed]
  3. P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721-1726 (2007).
    [CrossRef]
  4. K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).
    [PubMed]
  5. E. Dalimier, C. Dainty, and J. L. Barbur, “Effects of higher-order aberrations on functional vision as a function of light level,” J. Mod. Opt. 55, 791-803 (2008).
    [CrossRef]
  6. F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551-566 (1968).
  7. F. W. Campbell, R. H. S. Carpenter, and J. Z. Levinson, “Visibility of a periodic patterns compared with that of sinusoidal gratings,” J. Physiol. (London) 204, 283-298 (1969).
  8. K. R. Alexander, W. Xie, and D. J. Derlacki, “Spatial-frequency characteristics of letter identification,” J. Opt. Soc. Am. A 11, 2375-2382 (1994).
    [CrossRef]
  9. J. A. Solomon and D. G. Pelli, “The visual filter mediating letter identification,” Nature (London) 369, 395-397 (1994).
    [CrossRef]
  10. S. T. L. Chung, G. E. Legge, and B. S. Tjan, “Spatial-frequency characteristics of letter identification in central and peripheral vision,” Vision Res. 42, 2137-2152 (2002).
    [CrossRef] [PubMed]
  11. O. Nestares, R. Navarro, and B. Antona, “Bayesian model of Snellen visual acuity,” J. Opt. Soc. Am. A 20, 1371-1381 (2003).
    [CrossRef]
  12. D. A. Atchison, “Recent advances in measurement of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 88, 5-27 (2005).
    [CrossRef] [PubMed]
  13. A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1-9 (2002).
    [CrossRef]
  14. A. B. Watson and J. A. J. Ahumada, “Predicting visual acuity from wavefront aberrations,” J. Vision 8, 1-19 (2008).
    [CrossRef]
  15. A. Rose, “The sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am. 38, 196-208 (1948).
    [CrossRef] [PubMed]
  16. P. L. Kaufman and A. Alm, Adler's Physiology of the Eye: Clinical Application, 10th ed. (Mosby-Year Book, 2003).
  17. A. Stockman and L. T. Sharpe, “Into the twilight zone: The complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiol. Opt. 26, 225-239 (2006).
    [CrossRef] [PubMed]
  18. A. S. Patel, “Spatial resolution by the human visual system. The effect of mean retinal illuminance,” J. Opt. Soc. Am. 56, 689-694 (1966).
    [CrossRef] [PubMed]
  19. P. Artal, “Calculations of two-dimensional foveal retinal images in real eyes,” J. Opt. Soc. Am. A 7, 1374-1381 (1990).
    [CrossRef] [PubMed]
  20. J. Schwiegerling, “Wavefront guided lasik,” Opt. Photonics News 15, 26-29 (2004).
    [CrossRef]
  21. R. Navarro, E. Moreno-Barriuso, S. Bará, and T. Mancebo, “Phase plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236-238 (2000).
    [CrossRef]
  22. J. Holladay, P. Piers, G. Koranyi, M. van der Mooren, and N. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
    [PubMed]
  23. C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. (London) 187, 517-552 (1966).
  24. F. L. V. Nes and M. A. Bouman, “Spatial modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 401-406 (1967).
    [CrossRef]
  25. A. V. Meeteren and J. J. Vos, “Resolution and contrast sensitivity at low luminances,” Vision Res. 12, 825-833 (1972).
    [CrossRef] [PubMed]
  26. N. J. Coletta and V. Sharma, “Effects of luminance and spatial noise on interferometric contrast sensitivity,” J. Opt. Soc. Am. A 12, 2244-2251 (1995).
    [CrossRef]
  27. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).
  28. A. E. Burgess and H. Ghandeharian, “Visual signal detection. II. Signal-location identification,” J. Opt. Soc. Am. A 1, 906-910 (1984).
    [CrossRef] [PubMed]
  29. G. A. Gescheider, Psychophysics: The Fundamentals, 3rd ed. (Lawrence Erlbaum Associates, 1997).
  30. C. M. Chisholm, A. D. B. Evans, J. A. Harlow, and J. L. Barbur, “New test to assess pilot's vision following refractive surgery,” Aviat., Space Environ. Med. 74, 551-559 (2003).
  31. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949-1957 (1994).
    [CrossRef]
  32. A. B. Watson and D. G. Pelli, “Quest: A bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113-120 (1983).
    [CrossRef] [PubMed]
  33. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
    [CrossRef]
  34. J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322-328 (2004).
    [CrossRef]
  35. R. A. Applegate, J. D. Marsack, and L. N. Thibos, “Metrics of retinal image quality predict visual performance in eyes with 20/17 or better acuity,” Optom. Vision Sci. 83, 1611-1623 (2006).
    [CrossRef]
  36. R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles-Crawford functions: Normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 635-640 (1993).
    [CrossRef]
  37. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye's wave aberration,” J. Opt. Soc. Am. A 18, 497-506 (2001).
    [CrossRef]
  38. A. Guirao, D. R. Williams, and I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye's higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003-1015 (2001).
    [CrossRef]
  39. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye's optical aberrations,” J. Vision 4, 281-287 (2004).
    [CrossRef]
  40. X. He and E. C. Frey, “An optimal three-class linear observer derived from decision theory,” IEEE Trans. Med. Imaging 26, 77-83 (2007).
    [CrossRef] [PubMed]
  41. M. B. Sachs, J. Nachmias, and J. G. Robson, “Spatial-frequency channels in human vision,” J. Opt. Soc. Am. 61, 1176-1186 (1971).
    [CrossRef] [PubMed]
  42. V. M. Bondarko and M. V. Danilova, “What spatial frequency do we use to detect the orientation of a Landolt C?” Vision Res. 37, 2153-2156 (1997).
    [CrossRef] [PubMed]
  43. R. F. Hess, S. C. Dakin, and N. Kapoor, “The foveal 'crowding' effect: Physics or physiology?” Vision Res. 40, 365-370 (2000).
    [CrossRef] [PubMed]
  44. R. S. Anderson and L. N. Thibos, “Relationship between acuity for gratings and for tumbling-E letters in peripheral vision,” J. Opt. Soc. Am. A 16, 2321-2333 (1999).
    [CrossRef]

2008

E. Dalimier, C. Dainty, and J. L. Barbur, “Effects of higher-order aberrations on functional vision as a function of light level,” J. Mod. Opt. 55, 791-803 (2008).
[CrossRef]

A. B. Watson and J. A. J. Ahumada, “Predicting visual acuity from wavefront aberrations,” J. Vision 8, 1-19 (2008).
[CrossRef]

2007

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721-1726 (2007).
[CrossRef]

K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).
[PubMed]

X. He and E. C. Frey, “An optimal three-class linear observer derived from decision theory,” IEEE Trans. Med. Imaging 26, 77-83 (2007).
[CrossRef] [PubMed]

2006

R. A. Applegate, J. D. Marsack, and L. N. Thibos, “Metrics of retinal image quality predict visual performance in eyes with 20/17 or better acuity,” Optom. Vision Sci. 83, 1611-1623 (2006).
[CrossRef]

A. Stockman and L. T. Sharpe, “Into the twilight zone: The complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiol. Opt. 26, 225-239 (2006).
[CrossRef] [PubMed]

2005

D. A. Atchison, “Recent advances in measurement of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 88, 5-27 (2005).
[CrossRef] [PubMed]

2004

J. Schwiegerling, “Wavefront guided lasik,” Opt. Photonics News 15, 26-29 (2004).
[CrossRef]

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322-328 (2004).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye's optical aberrations,” J. Vision 4, 281-287 (2004).
[CrossRef]

2003

C. M. Chisholm, A. D. B. Evans, J. A. Harlow, and J. L. Barbur, “New test to assess pilot's vision following refractive surgery,” Aviat., Space Environ. Med. 74, 551-559 (2003).

O. Nestares, R. Navarro, and B. Antona, “Bayesian model of Snellen visual acuity,” J. Opt. Soc. Am. A 20, 1371-1381 (2003).
[CrossRef]

2002

J. Holladay, P. Piers, G. Koranyi, M. van der Mooren, and N. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1-9 (2002).
[CrossRef]

S. T. L. Chung, G. E. Legge, and B. S. Tjan, “Spatial-frequency characteristics of letter identification in central and peripheral vision,” Vision Res. 42, 2137-2152 (2002).
[CrossRef] [PubMed]

G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266-275 (2002).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634-S638 (2002).
[PubMed]

2001

2000

R. F. Hess, S. C. Dakin, and N. Kapoor, “The foveal 'crowding' effect: Physics or physiology?” Vision Res. 40, 365-370 (2000).
[CrossRef] [PubMed]

R. Navarro, E. Moreno-Barriuso, S. Bará, and T. Mancebo, “Phase plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236-238 (2000).
[CrossRef]

1999

1997

V. M. Bondarko and M. V. Danilova, “What spatial frequency do we use to detect the orientation of a Landolt C?” Vision Res. 37, 2153-2156 (1997).
[CrossRef] [PubMed]

G. A. Gescheider, Psychophysics: The Fundamentals, 3rd ed. (Lawrence Erlbaum Associates, 1997).

1995

1994

1993

R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles-Crawford functions: Normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 635-640 (1993).
[CrossRef]

1990

1984

1983

A. B. Watson and D. G. Pelli, “Quest: A bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113-120 (1983).
[CrossRef] [PubMed]

1972

A. V. Meeteren and J. J. Vos, “Resolution and contrast sensitivity at low luminances,” Vision Res. 12, 825-833 (1972).
[CrossRef] [PubMed]

1971

1969

F. W. Campbell, R. H. S. Carpenter, and J. Z. Levinson, “Visibility of a periodic patterns compared with that of sinusoidal gratings,” J. Physiol. (London) 204, 283-298 (1969).

1968

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551-566 (1968).

1967

1966

C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. (London) 187, 517-552 (1966).

A. S. Patel, “Spatial resolution by the human visual system. The effect of mean retinal illuminance,” J. Opt. Soc. Am. 56, 689-694 (1966).
[CrossRef] [PubMed]

1948

Ahumada, J. A. J.

A. B. Watson and J. A. J. Ahumada, “Predicting visual acuity from wavefront aberrations,” J. Vision 8, 1-19 (2008).
[CrossRef]

Alexander, K. R.

Alm, A.

P. L. Kaufman and A. Alm, Adler's Physiology of the Eye: Clinical Application, 10th ed. (Mosby-Year Book, 2003).

Anderson, R. S.

Antona, B.

Applegate, R. A.

R. A. Applegate, J. D. Marsack, and L. N. Thibos, “Metrics of retinal image quality predict visual performance in eyes with 20/17 or better acuity,” Optom. Vision Sci. 83, 1611-1623 (2006).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322-328 (2004).
[CrossRef]

R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles-Crawford functions: Normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 635-640 (1993).
[CrossRef]

Aragon, J. L.

Artal, P.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721-1726 (2007).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye's optical aberrations,” J. Vision 4, 281-287 (2004).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634-S638 (2002).
[PubMed]

H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye's wave aberration,” J. Opt. Soc. Am. A 18, 497-506 (2001).
[CrossRef]

P. Artal, “Calculations of two-dimensional foveal retinal images in real eyes,” J. Opt. Soc. Am. A 7, 1374-1381 (1990).
[CrossRef] [PubMed]

Atchison, D. A.

D. A. Atchison, “Recent advances in measurement of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 88, 5-27 (2005).
[CrossRef] [PubMed]

Bará, S.

Barbur, J. L.

E. Dalimier, C. Dainty, and J. L. Barbur, “Effects of higher-order aberrations on functional vision as a function of light level,” J. Mod. Opt. 55, 791-803 (2008).
[CrossRef]

C. M. Chisholm, A. D. B. Evans, J. A. Harlow, and J. L. Barbur, “New test to assess pilot's vision following refractive surgery,” Aviat., Space Environ. Med. 74, 551-559 (2003).

Barrett, H. H.

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).

Bille, J. F.

Bondarko, V. M.

V. M. Bondarko and M. V. Danilova, “What spatial frequency do we use to detect the orientation of a Landolt C?” Vision Res. 37, 2153-2156 (1997).
[CrossRef] [PubMed]

Bouman, M. A.

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

Burgess, A. E.

Campbell, F. W.

F. W. Campbell, R. H. S. Carpenter, and J. Z. Levinson, “Visibility of a periodic patterns compared with that of sinusoidal gratings,” J. Physiol. (London) 204, 283-298 (1969).

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551-566 (1968).

Carpenter, R. H. S.

F. W. Campbell, R. H. S. Carpenter, and J. Z. Levinson, “Visibility of a periodic patterns compared with that of sinusoidal gratings,” J. Physiol. (London) 204, 283-298 (1969).

Chateau, N.

K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).
[PubMed]

Chen, L.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye's optical aberrations,” J. Vision 4, 281-287 (2004).
[CrossRef]

Chisholm, C. M.

C. M. Chisholm, A. D. B. Evans, J. A. Harlow, and J. L. Barbur, “New test to assess pilot's vision following refractive surgery,” Aviat., Space Environ. Med. 74, 551-559 (2003).

Chung, S. T. L.

S. T. L. Chung, G. E. Legge, and B. S. Tjan, “Spatial-frequency characteristics of letter identification in central and peripheral vision,” Vision Res. 42, 2137-2152 (2002).
[CrossRef] [PubMed]

Coletta, N. J.

Cox, I. G.

Dainty, C.

E. Dalimier, C. Dainty, and J. L. Barbur, “Effects of higher-order aberrations on functional vision as a function of light level,” J. Mod. Opt. 55, 791-803 (2008).
[CrossRef]

Dakin, S. C.

R. F. Hess, S. C. Dakin, and N. Kapoor, “The foveal 'crowding' effect: Physics or physiology?” Vision Res. 40, 365-370 (2000).
[CrossRef] [PubMed]

Dalimier, E.

E. Dalimier, C. Dainty, and J. L. Barbur, “Effects of higher-order aberrations on functional vision as a function of light level,” J. Mod. Opt. 55, 791-803 (2008).
[CrossRef]

Danilova, M. V.

V. M. Bondarko and M. V. Danilova, “What spatial frequency do we use to detect the orientation of a Landolt C?” Vision Res. 37, 2153-2156 (1997).
[CrossRef] [PubMed]

Derlacki, D. J.

Enroth-Cugell, C.

C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. (London) 187, 517-552 (1966).

Evans, A. D. B.

C. M. Chisholm, A. D. B. Evans, J. A. Harlow, and J. L. Barbur, “New test to assess pilot's vision following refractive surgery,” Aviat., Space Environ. Med. 74, 551-559 (2003).

Fernández, E. J.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye's optical aberrations,” J. Vision 4, 281-287 (2004).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634-S638 (2002).
[PubMed]

Frey, E. C.

X. He and E. C. Frey, “An optimal three-class linear observer derived from decision theory,” IEEE Trans. Med. Imaging 26, 77-83 (2007).
[CrossRef] [PubMed]

Gescheider, G. A.

G. A. Gescheider, Psychophysics: The Fundamentals, 3rd ed. (Lawrence Erlbaum Associates, 1997).

Ghandeharian, H.

Goelz, S.

Gorceix, N.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721-1726 (2007).
[CrossRef]

Grimm, B.

Guirao, A.

Harlow, J. A.

C. M. Chisholm, A. D. B. Evans, J. A. Harlow, and J. L. Barbur, “New test to assess pilot's vision following refractive surgery,” Aviat., Space Environ. Med. 74, 551-559 (2003).

Harms, F.

K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).
[PubMed]

He, X.

X. He and E. C. Frey, “An optimal three-class linear observer derived from decision theory,” IEEE Trans. Med. Imaging 26, 77-83 (2007).
[CrossRef] [PubMed]

Hess, R. F.

R. F. Hess, S. C. Dakin, and N. Kapoor, “The foveal 'crowding' effect: Physics or physiology?” Vision Res. 40, 365-370 (2000).
[CrossRef] [PubMed]

Hofer, H.

Holladay, J.

J. Holladay, P. Piers, G. Koranyi, M. van der Mooren, and N. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

Kapoor, N.

R. F. Hess, S. C. Dakin, and N. Kapoor, “The foveal 'crowding' effect: Physics or physiology?” Vision Res. 40, 365-370 (2000).
[CrossRef] [PubMed]

Kaufman, P. L.

P. L. Kaufman and A. Alm, Adler's Physiology of the Eye: Clinical Application, 10th ed. (Mosby-Year Book, 2003).

Koranyi, G.

J. Holladay, P. Piers, G. Koranyi, M. van der Mooren, and N. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Krueger, R. R.

K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).
[PubMed]

Lakshminarayanan, V.

R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles-Crawford functions: Normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 635-640 (1993).
[CrossRef]

Legge, G. E.

S. T. L. Chung, G. E. Legge, and B. S. Tjan, “Spatial-frequency characteristics of letter identification in central and peripheral vision,” Vision Res. 42, 2137-2152 (2002).
[CrossRef] [PubMed]

Levinson, J. Z.

F. W. Campbell, R. H. S. Carpenter, and J. Z. Levinson, “Visibility of a periodic patterns compared with that of sinusoidal gratings,” J. Physiol. (London) 204, 283-298 (1969).

Liang, J.

Mancebo, T.

Manzanera, S.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721-1726 (2007).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye's optical aberrations,” J. Vision 4, 281-287 (2004).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634-S638 (2002).
[PubMed]

Marsack, J. D.

R. A. Applegate, J. D. Marsack, and L. N. Thibos, “Metrics of retinal image quality predict visual performance in eyes with 20/17 or better acuity,” Optom. Vision Sci. 83, 1611-1623 (2006).
[CrossRef]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322-328 (2004).
[CrossRef]

Meeteren, A. V.

A. V. Meeteren and J. J. Vos, “Resolution and contrast sensitivity at low luminances,” Vision Res. 12, 825-833 (1972).
[CrossRef] [PubMed]

Moreno-Barriuso, E.

Myers, K. J.

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).

Nachmias, J.

Navarro, R.

Nes, F. L. V.

Nestares, O.

Norrby, N.

J. Holladay, P. Piers, G. Koranyi, M. van der Mooren, and N. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Patel, A. S.

Pelli, D. G.

J. A. Solomon and D. G. Pelli, “The visual filter mediating letter identification,” Nature (London) 369, 395-397 (1994).
[CrossRef]

A. B. Watson and D. G. Pelli, “Quest: A bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113-120 (1983).
[CrossRef] [PubMed]

Piers, P.

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634-S638 (2002).
[PubMed]

J. Holladay, P. Piers, G. Koranyi, M. van der Mooren, and N. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Piers, P. A.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721-1726 (2007).
[CrossRef]

Porter, J.

Prieto, P. M.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721-1726 (2007).
[CrossRef]

Robson, J. G.

M. B. Sachs, J. Nachmias, and J. G. Robson, “Spatial-frequency channels in human vision,” J. Opt. Soc. Am. 61, 1176-1186 (1971).
[CrossRef] [PubMed]

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551-566 (1968).

C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. (London) 187, 517-552 (1966).

Rocha, K. M.

K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).
[PubMed]

Rose, A.

Sachs, M. B.

Schwiegerling, J.

J. Schwiegerling, “Wavefront guided lasik,” Opt. Photonics News 15, 26-29 (2004).
[CrossRef]

Sharma, V.

Sharpe, L. T.

A. Stockman and L. T. Sharpe, “Into the twilight zone: The complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiol. Opt. 26, 225-239 (2006).
[CrossRef] [PubMed]

Singer, B.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye's optical aberrations,” J. Vision 4, 281-287 (2004).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye's wave aberration,” J. Opt. Soc. Am. A 18, 497-506 (2001).
[CrossRef]

Solomon, J. A.

J. A. Solomon and D. G. Pelli, “The visual filter mediating letter identification,” Nature (London) 369, 395-397 (1994).
[CrossRef]

Stockman, A.

A. Stockman and L. T. Sharpe, “Into the twilight zone: The complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiol. Opt. 26, 225-239 (2006).
[CrossRef] [PubMed]

Thibos, L. N.

R. A. Applegate, J. D. Marsack, and L. N. Thibos, “Metrics of retinal image quality predict visual performance in eyes with 20/17 or better acuity,” Optom. Vision Sci. 83, 1611-1623 (2006).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322-328 (2004).
[CrossRef]

R. S. Anderson and L. N. Thibos, “Relationship between acuity for gratings and for tumbling-E letters in peripheral vision,” J. Opt. Soc. Am. A 16, 2321-2333 (1999).
[CrossRef]

Tjan, B. S.

S. T. L. Chung, G. E. Legge, and B. S. Tjan, “Spatial-frequency characteristics of letter identification in central and peripheral vision,” Vision Res. 42, 2137-2152 (2002).
[CrossRef] [PubMed]

Vabre, L.

K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).
[PubMed]

van der Mooren, M.

J. Holladay, P. Piers, G. Koranyi, M. van der Mooren, and N. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Vos, J. J.

A. V. Meeteren and J. J. Vos, “Resolution and contrast sensitivity at low luminances,” Vision Res. 12, 825-833 (1972).
[CrossRef] [PubMed]

Watson, A. B.

A. B. Watson and J. A. J. Ahumada, “Predicting visual acuity from wavefront aberrations,” J. Vision 8, 1-19 (2008).
[CrossRef]

A. B. Watson and D. G. Pelli, “Quest: A bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113-120 (1983).
[CrossRef] [PubMed]

Williams, D. R.

Xie, W.

Yoon, G. Y.

Aviat., Space Environ. Med.

C. M. Chisholm, A. D. B. Evans, J. A. Harlow, and J. L. Barbur, “New test to assess pilot's vision following refractive surgery,” Aviat., Space Environ. Med. 74, 551-559 (2003).

Clin. Exp. Optom.

D. A. Atchison, “Recent advances in measurement of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 88, 5-27 (2005).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

X. He and E. C. Frey, “An optimal three-class linear observer derived from decision theory,” IEEE Trans. Med. Imaging 26, 77-83 (2007).
[CrossRef] [PubMed]

J. Cataract Refractive Surg.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721-1726 (2007).
[CrossRef]

J. Mod. Opt.

E. Dalimier, C. Dainty, and J. L. Barbur, “Effects of higher-order aberrations on functional vision as a function of light level,” J. Mod. Opt. 55, 791-803 (2008).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

R. S. Anderson and L. N. Thibos, “Relationship between acuity for gratings and for tumbling-E letters in peripheral vision,” J. Opt. Soc. Am. A 16, 2321-2333 (1999).
[CrossRef]

N. J. Coletta and V. Sharma, “Effects of luminance and spatial noise on interferometric contrast sensitivity,” J. Opt. Soc. Am. A 12, 2244-2251 (1995).
[CrossRef]

A. E. Burgess and H. Ghandeharian, “Visual signal detection. II. Signal-location identification,” J. Opt. Soc. Am. A 1, 906-910 (1984).
[CrossRef] [PubMed]

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949-1957 (1994).
[CrossRef]

R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles-Crawford functions: Normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 635-640 (1993).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye's wave aberration,” J. Opt. Soc. Am. A 18, 497-506 (2001).
[CrossRef]

A. Guirao, D. R. Williams, and I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye's higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003-1015 (2001).
[CrossRef]

P. Artal, “Calculations of two-dimensional foveal retinal images in real eyes,” J. Opt. Soc. Am. A 7, 1374-1381 (1990).
[CrossRef] [PubMed]

O. Nestares, R. Navarro, and B. Antona, “Bayesian model of Snellen visual acuity,” J. Opt. Soc. Am. A 20, 1371-1381 (2003).
[CrossRef]

A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1-9 (2002).
[CrossRef]

K. R. Alexander, W. Xie, and D. J. Derlacki, “Spatial-frequency characteristics of letter identification,” J. Opt. Soc. Am. A 11, 2375-2382 (1994).
[CrossRef]

G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266-275 (2002).
[CrossRef]

J. Physiol. (London)

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551-566 (1968).

F. W. Campbell, R. H. S. Carpenter, and J. Z. Levinson, “Visibility of a periodic patterns compared with that of sinusoidal gratings,” J. Physiol. (London) 204, 283-298 (1969).

C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. (London) 187, 517-552 (1966).

J. Refract. Surg.

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634-S638 (2002).
[PubMed]

K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).
[PubMed]

J. Holladay, P. Piers, G. Koranyi, M. van der Mooren, and N. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

J. Vision

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye's optical aberrations,” J. Vision 4, 281-287 (2004).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322-328 (2004).
[CrossRef]

A. B. Watson and J. A. J. Ahumada, “Predicting visual acuity from wavefront aberrations,” J. Vision 8, 1-19 (2008).
[CrossRef]

Nature (London)

J. A. Solomon and D. G. Pelli, “The visual filter mediating letter identification,” Nature (London) 369, 395-397 (1994).
[CrossRef]

Ophthalmic Physiol. Opt.

A. Stockman and L. T. Sharpe, “Into the twilight zone: The complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiol. Opt. 26, 225-239 (2006).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Photonics News

J. Schwiegerling, “Wavefront guided lasik,” Opt. Photonics News 15, 26-29 (2004).
[CrossRef]

Optom. Vision Sci.

R. A. Applegate, J. D. Marsack, and L. N. Thibos, “Metrics of retinal image quality predict visual performance in eyes with 20/17 or better acuity,” Optom. Vision Sci. 83, 1611-1623 (2006).
[CrossRef]

Percept. Psychophys.

A. B. Watson and D. G. Pelli, “Quest: A bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113-120 (1983).
[CrossRef] [PubMed]

Vision Res.

A. V. Meeteren and J. J. Vos, “Resolution and contrast sensitivity at low luminances,” Vision Res. 12, 825-833 (1972).
[CrossRef] [PubMed]

S. T. L. Chung, G. E. Legge, and B. S. Tjan, “Spatial-frequency characteristics of letter identification in central and peripheral vision,” Vision Res. 42, 2137-2152 (2002).
[CrossRef] [PubMed]

V. M. Bondarko and M. V. Danilova, “What spatial frequency do we use to detect the orientation of a Landolt C?” Vision Res. 37, 2153-2156 (1997).
[CrossRef] [PubMed]

R. F. Hess, S. C. Dakin, and N. Kapoor, “The foveal 'crowding' effect: Physics or physiology?” Vision Res. 40, 365-370 (2000).
[CrossRef] [PubMed]

Other

P. L. Kaufman and A. Alm, Adler's Physiology of the Eye: Clinical Application, 10th ed. (Mosby-Year Book, 2003).

G. A. Gescheider, Psychophysics: The Fundamentals, 3rd ed. (Lawrence Erlbaum Associates, 1997).

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Flow chart representing the classification task performed by the observer.

Fig. 2
Fig. 2

Constructed NTF curves in the photopic and low mesopic light regime.

Fig. 3
Fig. 3

Measured and computed AO visual benefit in the photopic light regime for 13 sets of conditions (different subjects and pupil sizes). The error bars given for the experimental data represent ± 1 standard error.

Fig. 4
Fig. 4

Calculation of the difference spectrum for two sets of Landolt C orientations: (a) opposite orientations, (b) orthogonal orientations.

Fig. 5
Fig. 5

Difference spectrum filtered by the photopic and low mesopic NTFs, and corrected and aberrated MTF.

Tables (3)

Tables Icon

Table 1 Comparison Between the Computed Ratio of Contrast Sensitivity and the Ratio of Separability Measure With and Without AO a

Tables Icon

Table 2 RMS Error and Correlation Coefficient Between the Computed and Measured AO Benefit

Tables Icon

Table 3 Computed and Measured Change in the AO Benefit from the Photopic to Lower Mesopic, Averaged Over Two Subjects (in Log Units)

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

s ( u ) = I ̃ o b j ( u ) × OTF ( u ) × NTF ( u ) ,
pr ( g H l ) = ( 1 2 π σ 2 ) M 2 m = 1 M exp ( ( g m s l m ) 2 2 σ 2 ) ,
t l = m = 1 M ( g m s l m ) 2 .
SNR t = t 1 t 2 1 2 ( σ 1 2 + σ 2 2 ) .
S = 4 H T = 4 × tr [ S 2 1 S 1 ] ,
S 1 = 1 L l = 1 L ( g ¯ l g ¯ ) ( g ¯ l g ¯ ) t ,
S 2 = 1 L l = 1 L ( g g ¯ ) ( g g ¯ ) t H l ,
S = 4 σ 2 1 L l = 1 L s l s ¯ 2 .
S T = S 0 × c T ,
( S 0 ) 1 ( S 0 ) 2 = ( S T c T ) 1 ( S T c T ) 2 = c s 1 c s 2 .
PSF ( x , y ) = FT [ P ( ξ , η ) ] 2 .
P ( ξ , η ) = { exp [ 2 π i λ W ( ξ , η ) ] for ( ξ , η ) in the aperture 0 elsewhere ] .

Metrics