Abstract

Appropriate surface termination is used to improve dramatically the subwavelength imaging resolution of a multilayered positive–negative permittivity structure operating in the infrared or optical canalization regime. The imaging resolution of the improved multilayered structure resists practical material loss well, and it is not sensitive to the thickness of the interface layers, the total thickness, nor the period of the multilayered structure. Such a structure can be used to transfer a subwavelength image to a far distance through a thick structure.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  3. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media,” J. Opt. Soc. Am. B 23, 498-505 (2006).
    [CrossRef]
  4. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419-1430 (2003).
    [CrossRef]
  5. J. B. Pendry and S. A. Ramakrishna, “Refining the perfect lens,” Physica B 338, 329-332 (2003).
    [CrossRef]
  6. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
    [CrossRef]
  7. P. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
    [CrossRef]
  8. A. Alù and N. Engheta, “Three-dimensional nanotransmission lines at optical frequencies: A recipe for broadband negative-refraction optical metamaterials,” Phys. Rev. B 75, 024304 (2007).
    [CrossRef]
  9. D. M. Pustai, S. Shi, C. Chen, A. Sharkawy, and D. W. Prather, “Analysis of splitters for self-collimated beams in planar photonic crystals,” Opt. Express 12, 1823-1831 (2004).
    [CrossRef] [PubMed]
  10. M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “Self-guiding of infrared and visible light in photonic crystal slabs,” Appl. Phys. B 81, 313-319 (2005).
    [CrossRef]
  11. S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269-4271 (2004).
    [CrossRef]
  12. L. Wu, S. He, and L. F. Shen, “Abnormal phenomena in a one-dimensional periodic structure containing left-handed materials,” Phys. Rev. B 67, 235103 (2003).
    [CrossRef]
  13. X. Li, S. L. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75, 045103 (2007).
    [CrossRef]
  14. G. Shvets and Y. Urzhumov, “Polariton-enhanced near field lithography and imaging with infrared light,” Mater. Res. Soc. Symp. Proc. 820, R1.2.1 (2004).
    [CrossRef]
  15. D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23, 468-478 (2005).
    [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1998), pp. 353-357.
  17. P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Met. Phys. 6, 1583-606 (1976).
    [CrossRef]
  18. B. Dold and R. Mecke, “Optische Eigenschaften von Edelmetallen, Übergangsmetallen und deren Legierungen im Infrarot,” Optik (Stuttgart) 22, 435-446 (1965).

2007 (2)

A. Alù and N. Engheta, “Three-dimensional nanotransmission lines at optical frequencies: A recipe for broadband negative-refraction optical metamaterials,” Phys. Rev. B 75, 024304 (2007).
[CrossRef]

X. Li, S. L. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75, 045103 (2007).
[CrossRef]

2006 (2)

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media,” J. Opt. Soc. Am. B 23, 498-505 (2006).
[CrossRef]

2005 (4)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[CrossRef] [PubMed]

P. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[CrossRef]

M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “Self-guiding of infrared and visible light in photonic crystal slabs,” Appl. Phys. B 81, 313-319 (2005).
[CrossRef]

D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23, 468-478 (2005).
[CrossRef]

2004 (3)

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269-4271 (2004).
[CrossRef]

G. Shvets and Y. Urzhumov, “Polariton-enhanced near field lithography and imaging with infrared light,” Mater. Res. Soc. Symp. Proc. 820, R1.2.1 (2004).
[CrossRef]

D. M. Pustai, S. Shi, C. Chen, A. Sharkawy, and D. W. Prather, “Analysis of splitters for self-collimated beams in planar photonic crystals,” Opt. Express 12, 1823-1831 (2004).
[CrossRef] [PubMed]

2003 (3)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419-1430 (2003).
[CrossRef]

J. B. Pendry and S. A. Ramakrishna, “Refining the perfect lens,” Physica B 338, 329-332 (2003).
[CrossRef]

L. Wu, S. He, and L. F. Shen, “Abnormal phenomena in a one-dimensional periodic structure containing left-handed materials,” Phys. Rev. B 67, 235103 (2003).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1998 (1)

E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1998), pp. 353-357.

1976 (1)

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Met. Phys. 6, 1583-606 (1976).
[CrossRef]

1965 (1)

B. Dold and R. Mecke, “Optische Eigenschaften von Edelmetallen, Übergangsmetallen und deren Legierungen im Infrarot,” Optik (Stuttgart) 22, 435-446 (1965).

Alù, A.

A. Alù and N. Engheta, “Three-dimensional nanotransmission lines at optical frequencies: A recipe for broadband negative-refraction optical metamaterials,” Phys. Rev. B 75, 024304 (2007).
[CrossRef]

Augustin, M.

M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “Self-guiding of infrared and visible light in photonic crystal slabs,” Appl. Phys. B 81, 313-319 (2005).
[CrossRef]

Belov, P.

P. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[CrossRef]

Belov, P. A.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

Chen, C.

Dold, B.

B. Dold and R. Mecke, “Optische Eigenschaften von Edelmetallen, Übergangsmetallen und deren Legierungen im Infrarot,” Optik (Stuttgart) 22, 435-446 (1965).

Elser, J.

Engheta, N.

A. Alù and N. Engheta, “Three-dimensional nanotransmission lines at optical frequencies: A recipe for broadband negative-refraction optical metamaterials,” Phys. Rev. B 75, 024304 (2007).
[CrossRef]

Etrich, C.

M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “Self-guiding of infrared and visible light in photonic crystal slabs,” Appl. Phys. B 81, 313-319 (2005).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Fuchs, H.-J.

M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “Self-guiding of infrared and visible light in photonic crystal slabs,” Appl. Phys. B 81, 313-319 (2005).
[CrossRef]

Hao, Y.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

He, S.

L. Wu, S. He, and L. F. Shen, “Abnormal phenomena in a one-dimensional periodic structure containing left-handed materials,” Phys. Rev. B 67, 235103 (2003).
[CrossRef]

He, S. L.

X. Li, S. L. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75, 045103 (2007).
[CrossRef]

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269-4271 (2004).
[CrossRef]

Ikonen, P.

P. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[CrossRef]

Iliew, R.

M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “Self-guiding of infrared and visible light in photonic crystal slabs,” Appl. Phys. B 81, 313-319 (2005).
[CrossRef]

Jin, Y.

X. Li, S. L. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75, 045103 (2007).
[CrossRef]

Kley, E.-B.

M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “Self-guiding of infrared and visible light in photonic crystal slabs,” Appl. Phys. B 81, 313-319 (2005).
[CrossRef]

Korobkin, D.

Lederer, F.

M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “Self-guiding of infrared and visible light in photonic crystal slabs,” Appl. Phys. B 81, 313-319 (2005).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Lengkeek, H. P.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Met. Phys. 6, 1583-606 (1976).
[CrossRef]

Li, X.

X. Li, S. L. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75, 045103 (2007).
[CrossRef]

Mecke, R.

B. Dold and R. Mecke, “Optische Eigenschaften von Edelmetallen, Übergangsmetallen und deren Legierungen im Infrarot,” Optik (Stuttgart) 22, 435-446 (1965).

Narimanov, E. E.

Nolte, S.

M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “Self-guiding of infrared and visible light in photonic crystal slabs,” Appl. Phys. B 81, 313-319 (2005).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1998), pp. 353-357.

Pendry, J. B.

J. B. Pendry and S. A. Ramakrishna, “Refining the perfect lens,” Physica B 338, 329-332 (2003).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419-1430 (2003).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Peschel, U.

M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “Self-guiding of infrared and visible light in photonic crystal slabs,” Appl. Phys. B 81, 313-319 (2005).
[CrossRef]

Podolskiy, V. A.

Prather, D. W.

Pustai, D. M.

Qiu, M.

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269-4271 (2004).
[CrossRef]

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419-1430 (2003).
[CrossRef]

J. B. Pendry and S. A. Ramakrishna, “Refining the perfect lens,” Physica B 338, 329-332 (2003).
[CrossRef]

Ruan, Z. C.

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269-4271 (2004).
[CrossRef]

Schelle, D.

M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “Self-guiding of infrared and visible light in photonic crystal slabs,” Appl. Phys. B 81, 313-319 (2005).
[CrossRef]

Sharkawy, A.

Shen, L. F.

L. Wu, S. He, and L. F. Shen, “Abnormal phenomena in a one-dimensional periodic structure containing left-handed materials,” Phys. Rev. B 67, 235103 (2003).
[CrossRef]

Shi, S.

Shvets, G.

D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23, 468-478 (2005).
[CrossRef]

G. Shvets and Y. Urzhumov, “Polariton-enhanced near field lithography and imaging with infrared light,” Mater. Res. Soc. Symp. Proc. 820, R1.2.1 (2004).
[CrossRef]

Simovski, C. R.

P. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[CrossRef]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419-1430 (2003).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Tünnermann, A.

M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “Self-guiding of infrared and visible light in photonic crystal slabs,” Appl. Phys. B 81, 313-319 (2005).
[CrossRef]

Urzhumov, Y.

D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23, 468-478 (2005).
[CrossRef]

G. Shvets and Y. Urzhumov, “Polariton-enhanced near field lithography and imaging with infrared light,” Mater. Res. Soc. Symp. Proc. 820, R1.2.1 (2004).
[CrossRef]

van Kampen, F. F.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Met. Phys. 6, 1583-606 (1976).
[CrossRef]

van Went, C. G.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Met. Phys. 6, 1583-606 (1976).
[CrossRef]

Wangberg, R.

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419-1430 (2003).
[CrossRef]

Winsemius, P.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Met. Phys. 6, 1583-606 (1976).
[CrossRef]

Wu, L.

L. Wu, S. He, and L. F. Shen, “Abnormal phenomena in a one-dimensional periodic structure containing left-handed materials,” Phys. Rev. B 67, 235103 (2003).
[CrossRef]

Xiao, S. S.

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269-4271 (2004).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Appl. Phys. B (1)

M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “Self-guiding of infrared and visible light in photonic crystal slabs,” Appl. Phys. B 81, 313-319 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269-4271 (2004).
[CrossRef]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419-1430 (2003).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. F: Met. Phys. (1)

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Met. Phys. 6, 1583-606 (1976).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

G. Shvets and Y. Urzhumov, “Polariton-enhanced near field lithography and imaging with infrared light,” Mater. Res. Soc. Symp. Proc. 820, R1.2.1 (2004).
[CrossRef]

Opt. Express (1)

Optik (Stuttgart) (1)

B. Dold and R. Mecke, “Optische Eigenschaften von Edelmetallen, Übergangsmetallen und deren Legierungen im Infrarot,” Optik (Stuttgart) 22, 435-446 (1965).

Phys. Rev. B (5)

L. Wu, S. He, and L. F. Shen, “Abnormal phenomena in a one-dimensional periodic structure containing left-handed materials,” Phys. Rev. B 67, 235103 (2003).
[CrossRef]

X. Li, S. L. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75, 045103 (2007).
[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

P. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[CrossRef]

A. Alù and N. Engheta, “Three-dimensional nanotransmission lines at optical frequencies: A recipe for broadband negative-refraction optical metamaterials,” Phys. Rev. B 75, 024304 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Physica B (1)

J. B. Pendry and S. A. Ramakrishna, “Refining the perfect lens,” Physica B 338, 329-332 (2003).
[CrossRef]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1998), pp. 353-357.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Multilayered structure utilized to achieve subwavelength focusing.

Fig. 2
Fig. 2

(a) Transmissivity and (b) magnetic intensity at the image plane for a line source when λ = 11 μ m , d 1 = d 2 = 0.25 μ m , ε 1 = 4 , ε 2 = 4 + 0.25 i . (c) Magnetic intensity at the image plane for two slots (the width of each slot is 0.1 μ m and, the distance between two slots is 1.5 μ m ). The blue solid curves are for a multilayered structure composed of N = 30 periods, and the red dashed curves are for the improved multilayered structure when one additional layer with the same permittivity as that of the leftmost layer is added to the rightmost interface.

Fig. 3
Fig. 3

(a) Transmissivity as a function of k z k and (b) the magnetic intensity at the image plane for a line source when ε 1 = 4 , ε 2 = 4 + 0.25 i , and d = 0.5 μ m . Results are for the improved multilayered structure with period number N = 13 , 16, 20, 40, and 100 as shown in the legends.

Tables (1)

Tables Icon

Table 1 FWHMs When the Thicknesses of the Two Interface Layers of the Multilayered Structure Vary Under Three Different Conditions

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

cos ( K x d ) = cos ( k 1 x d 1 ) cos ( k 2 x d 2 ) 1 2 ( k 1 x ε 2 ε 1 k 2 x + ε 1 k 2 x k 1 x ε 2 ) sin ( k 1 x d 1 ) sin ( k 2 x d 2 ) ,
d 1 Re ( ε 1 ) + d 2 Re ( ε 2 ) = 0 ,
ε ¯ = Re ( ε 1 ) d 1 + Re ( ε 2 ) d 2 d = 0 .

Metrics