Abstract

We studied the performance of a plasmonic chain waveguide by employing an array of nanoshell structures. The optical properties of the proposed structures are discussed in detail with respect to the mode coupling for both low-order resonances and high-order multipolar modes. We show (a) that the choice of nanoshell particles allows an easy tuning of the structure’s resonances according to given wavelength specifications and (b) that the resonances are insensitive to the chain length when high-order multipolar modes are involved. Moreover, chain waveguides that are operated on resonant multipolar modes provide propagation lengths up to 1.88μm, which is beyond what is maximally achieved by conventional solid particle chains. This is attributed to the large field enhancement within metallic nanoshell structures, as well as to far-field effects, which play an important role in low-loss light guiding along nanoshell chains.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  2. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
    [CrossRef]
  3. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Aalerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663-669 (2002).
    [CrossRef]
  4. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. M. Moreno, and F. J. G. Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
    [CrossRef] [PubMed]
  5. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1999).
    [CrossRef]
  6. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356-16359 (2000).
    [CrossRef]
  7. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
    [CrossRef]
  8. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  9. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  10. S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063-1065 (1999).
    [CrossRef]
  11. P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47-52 (2004).
    [CrossRef] [PubMed]
  12. N. C. Panoiu and R. M. Osgood, Jr., “Linear and nonlinear transmission of surface plasmon polaritons in an optical nanowire,” in Organic and Nanocomposite Optical Materials, Vol. 846 of the MRS Symposium Proceedings Series, A.Cartwright, T.M.Cooper, S.P.Karna, and H.Nakonishi, eds. (Materials Research Society, 2005), pp. DD5.6.1-DD5.6.6.
  13. J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: Improving, sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5, 285-294 (2003).
    [CrossRef]
  14. COMSOL Multiphysics (Version 3.3) is a FEM-based multipurpose simulation platform, available at http://www.comsol.com.
  15. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  16. A. Downes and Ph. Dumas, “Chemical analysis and optical properties of metallic nanoclusters,” Appl. Surf. Sci. 770, 212-213 (2003).
  17. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762-1764 (2002).
    [CrossRef]
  18. B. S. Hwang, M. H. Kwon, and J. Kim, “Use of a near field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: A study by the finite difference time domain method,” Microsc. Res. Tech. 64, 453-458 (2004).
    [CrossRef] [PubMed]
  19. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nat. Mater. 2, 229-232 (2003).
    [CrossRef] [PubMed]
  20. R. D. Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays,” Nano Lett. 7, 2004-2008 (2007).
    [CrossRef]
  21. J. V. Hernandez, L. D. Noordam, and F. Robicheaux, “Asymmetric response in a line of optically driven metallic nanospheres,” J. Phys. Chem. B 109, 15808-15811 (2005).
    [CrossRef]
  22. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714-1716 (2002).
    [CrossRef]
  23. W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86, 181108 (2005).
    [CrossRef]
  24. H. Wang, D. W. Brandl, F. Lei, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827-832 (2006).
    [CrossRef] [PubMed]

2008 (1)

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. M. Moreno, and F. J. G. Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

2007 (1)

R. D. Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays,” Nano Lett. 7, 2004-2008 (2007).
[CrossRef]

2006 (1)

H. Wang, D. W. Brandl, F. Lei, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

2005 (5)

W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86, 181108 (2005).
[CrossRef]

J. V. Hernandez, L. D. Noordam, and F. Robicheaux, “Asymmetric response in a line of optically driven metallic nanospheres,” J. Phys. Chem. B 109, 15808-15811 (2005).
[CrossRef]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

N. C. Panoiu and R. M. Osgood, Jr., “Linear and nonlinear transmission of surface plasmon polaritons in an optical nanowire,” in Organic and Nanocomposite Optical Materials, Vol. 846 of the MRS Symposium Proceedings Series, A.Cartwright, T.M.Cooper, S.P.Karna, and H.Nakonishi, eds. (Materials Research Society, 2005), pp. DD5.6.1-DD5.6.6.

2004 (2)

B. S. Hwang, M. H. Kwon, and J. Kim, “Use of a near field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: A study by the finite difference time domain method,” Microsc. Res. Tech. 64, 453-458 (2004).
[CrossRef] [PubMed]

P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47-52 (2004).
[CrossRef] [PubMed]

2003 (4)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: Improving, sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5, 285-294 (2003).
[CrossRef]

A. Downes and Ph. Dumas, “Chemical analysis and optical properties of metallic nanoclusters,” Appl. Surf. Sci. 770, 212-213 (2003).

2002 (3)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714-1716 (2002).
[CrossRef]

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Aalerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

2000 (2)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356-16359 (2000).
[CrossRef]

1999 (2)

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063-1065 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1999).
[CrossRef]

1995 (1)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Aalerno, M.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Aalerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

Alivisatos, P.

P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47-52 (2004).
[CrossRef] [PubMed]

Atwater, H. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714-1716 (2002).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356-16359 (2000).
[CrossRef]

Aussenegg, F. R.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Aalerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1999).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
[CrossRef]

Bozhevolnyi, S. I.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. M. Moreno, and F. J. G. Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Brandl, D. W.

H. Wang, D. W. Brandl, F. Lei, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356-16359 (2000).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Ditlbacher, H.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Aalerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

Downes, A.

A. Downes and Ph. Dumas, “Chemical analysis and optical properties of metallic nanoclusters,” Appl. Surf. Sci. 770, 212-213 (2003).

Dumas, Ph.

A. Downes and Ph. Dumas, “Chemical analysis and optical properties of metallic nanoclusters,” Appl. Surf. Sci. 770, 212-213 (2003).

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Halas, N. J.

H. Wang, D. W. Brandl, F. Lei, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: Improving, sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5, 285-294 (2003).
[CrossRef]

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063-1065 (1999).
[CrossRef]

Hale, G. D.

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063-1065 (1999).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356-16359 (2000).
[CrossRef]

Hernandez, J. V.

J. V. Hernandez, L. D. Noordam, and F. Robicheaux, “Asymmetric response in a line of optically driven metallic nanospheres,” J. Phys. Chem. B 109, 15808-15811 (2005).
[CrossRef]

Hwang, B. S.

B. S. Hwang, M. H. Kwon, and J. Kim, “Use of a near field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: A study by the finite difference time domain method,” Microsc. Res. Tech. 64, 453-458 (2004).
[CrossRef] [PubMed]

Jackson, J. B.

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063-1065 (1999).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714-1716 (2002).
[CrossRef]

Kim, J.

B. S. Hwang, M. H. Kwon, and J. Kim, “Use of a near field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: A study by the finite difference time domain method,” Microsc. Res. Tech. 64, 453-458 (2004).
[CrossRef] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Koenderink, A. F.

R. D. Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays,” Nano Lett. 7, 2004-2008 (2007).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Krenn, J. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Aalerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1999).
[CrossRef]

Kwon, M. H.

B. S. Hwang, M. H. Kwon, and J. Kim, “Use of a near field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: A study by the finite difference time domain method,” Microsc. Res. Tech. 64, 453-458 (2004).
[CrossRef] [PubMed]

Lamprecht, B.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Aalerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

Lei, F.

H. Wang, D. W. Brandl, F. Lei, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

Leitner, A.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Aalerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1999).
[CrossRef]

Maier, S. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714-1716 (2002).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. M. Moreno, and F. J. G. Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Moreno, L. M.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. M. Moreno, and F. J. G. Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Nomura, W.

W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86, 181108 (2005).
[CrossRef]

Noordam, L. D.

J. V. Hernandez, L. D. Noordam, and F. Robicheaux, “Asymmetric response in a line of optically driven metallic nanospheres,” J. Phys. Chem. B 109, 15808-15811 (2005).
[CrossRef]

Nordlander, P.

H. Wang, D. W. Brandl, F. Lei, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

Ohtsu, M.

W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86, 181108 (2005).
[CrossRef]

Oldenburg, S. J.

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063-1065 (1999).
[CrossRef]

Osgood, R. M.

N. C. Panoiu and R. M. Osgood, Jr., “Linear and nonlinear transmission of surface plasmon polaritons in an optical nanowire,” in Organic and Nanocomposite Optical Materials, Vol. 846 of the MRS Symposium Proceedings Series, A.Cartwright, T.M.Cooper, S.P.Karna, and H.Nakonishi, eds. (Materials Research Society, 2005), pp. DD5.6.1-DD5.6.6.

Panoiu, N. C.

N. C. Panoiu and R. M. Osgood, Jr., “Linear and nonlinear transmission of surface plasmon polaritons in an optical nanowire,” in Organic and Nanocomposite Optical Materials, Vol. 846 of the MRS Symposium Proceedings Series, A.Cartwright, T.M.Cooper, S.P.Karna, and H.Nakonishi, eds. (Materials Research Society, 2005), pp. DD5.6.1-DD5.6.6.

Penninkhof, J. J.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Polman, A.

R. D. Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays,” Nano Lett. 7, 2004-2008 (2007).
[CrossRef]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Quinten, M.

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Robicheaux, F.

J. V. Hernandez, L. D. Noordam, and F. Robicheaux, “Asymmetric response in a line of optically driven metallic nanospheres,” J. Phys. Chem. B 109, 15808-15811 (2005).
[CrossRef]

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. M. Moreno, and F. J. G. Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Schider, G.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Aalerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

Sweatlock, L. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Vidal, F. J. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. M. Moreno, and F. J. G. Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Waele, R. D.

R. D. Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays,” Nano Lett. 7, 2004-2008 (2007).
[CrossRef]

Wang, H.

H. Wang, D. W. Brandl, F. Lei, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

West, J. L.

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: Improving, sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5, 285-294 (2003).
[CrossRef]

Yatsui, T.

W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86, 181108 (2005).
[CrossRef]

Annu. Rev. Biomed. Eng. (1)

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: Improving, sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5, 285-294 (2003).
[CrossRef]

Appl. Phys. Lett. (4)

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063-1065 (1999).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714-1716 (2002).
[CrossRef]

W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86, 181108 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

A. Downes and Ph. Dumas, “Chemical analysis and optical properties of metallic nanoclusters,” Appl. Surf. Sci. 770, 212-213 (2003).

Europhys. Lett. (1)

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Aalerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Phys. Chem. B (1)

J. V. Hernandez, L. D. Noordam, and F. Robicheaux, “Asymmetric response in a line of optically driven metallic nanospheres,” J. Phys. Chem. B 109, 15808-15811 (2005).
[CrossRef]

Microsc. Res. Tech. (1)

B. S. Hwang, M. H. Kwon, and J. Kim, “Use of a near field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: A study by the finite difference time domain method,” Microsc. Res. Tech. 64, 453-458 (2004).
[CrossRef] [PubMed]

Nano Lett. (2)

R. D. Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays,” Nano Lett. 7, 2004-2008 (2007).
[CrossRef]

H. Wang, D. W. Brandl, F. Lei, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47-52 (2004).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (4)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356-16359 (2000).
[CrossRef]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. M. Moreno, and F. J. G. Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Other (3)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

N. C. Panoiu and R. M. Osgood, Jr., “Linear and nonlinear transmission of surface plasmon polaritons in an optical nanowire,” in Organic and Nanocomposite Optical Materials, Vol. 846 of the MRS Symposium Proceedings Series, A.Cartwright, T.M.Cooper, S.P.Karna, and H.Nakonishi, eds. (Materials Research Society, 2005), pp. DD5.6.1-DD5.6.6.

COMSOL Multiphysics (Version 3.3) is a FEM-based multipurpose simulation platform, available at http://www.comsol.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic drawing of a finite nanoshell chain waveguide with constant separation between neighboring particles. The coordinate system and the parameters used in the calculations are also indicated, where a is the center-to-center distance between the nanoshells, d is the interparticle distance, r 1 is the core radius, and r 2 r 1 is the shell thickness. The materials for the core and shell are dielectric and metal or vice versa.

Fig. 2
Fig. 2

(a) Spectral response of the SCSs of different 2D particle structures; (b)–(d) electric field distributions for the metallic nanoshell (structure #3) with r 1 = 15 nm and r 2 = 20 nm [cf. blue curve in (a)] at the three resonance wavelengths (b) 333 nm , (c) 432 nm ; and (d) 539 nm . The grayscale bar (color online) shown in the figure quantifies the field enhancement factor, which is defined as the ratio of the obtained maximal field strength to the incident field.

Fig. 3
Fig. 3

Simulated spectral response of the SCSs for different linear arrays of nanoshell particles ( r 1 = 15 nm , r 2 = 20 nm ) in air. (a) Arrays consisting of 4, 8, and 12 nanoshells spaced by 2 nm ; (b) arrays with 4, 8, and 12 nanoshells spaced by 10 nm . A spectrum for a single nanoshell particle is also shown in each panel. Note that for graphic reasons, only the data from 300 nm to 480 nm were displayed in the figures.

Fig. 4
Fig. 4

Normalized total field intensity E 2 along a linear chain with seven nanoshells under transversely ( T ) and longitudinally ( L ) polarized excitations when the structure is operated at the single nanoshell resonance ( 539 nm ) . (a) For an interparticle separation of 10 nm , and (b) for a reduced interparticle separation of 2 nm . The data were gathered starting from the center of the second nanoshell to the center of the sixth nanoshell in order to mask out potential interference effects at the near and the far ends of the waveguide chain.

Fig. 5
Fig. 5

Normalized total field intensity E 2 along a linear chain with seven nanoshells under transverse ( T ) and longitudinally ( L ) polarized excitation when the structure is operated at the single nanoshell’s multipolar resonance wavelength of 333 nm . The data were taken from the center of the second nanoshell to the center of the sixth nanoshell (as indicated by the scale bar inset) in order to mask out potential interference effects at the near and the far ends of the waveguide chain. The interparticle distance is 10 nm . Inset: Total field intensity distribution for transverse polarization (T mode).

Fig. 6
Fig. 6

Normalized total field intensity E 2 along a linear chain with seven nanoshells having an interparticle distance of 10 nm under T polarization when the structure is operated at wavelengths that are considerably detuned from the single nanoshell resonances. (a) Total field intensity distribution along the black curve as indicated in (b), where in the scale bar inset, “0” indicates the starting point of the plot position in (a); (b) corresponding total field intensity distributions for different wavelengths.

Fig. 7
Fig. 7

Simulation of the total electric field distribution at resonance, showing the near-field enhancement along the different particle’s cross section. (a) Nanoshell at a resonance wavelength of 539 nm (dipole resonance), (b) solid metallic rod at 341 nm , (c) nanoshell at the multipolar resonance wavelength of 333 nm .

Metrics