E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489-509 (2006).

[CrossRef]

E. Y. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 1-21 (2006).

E. Candes and T. Tao, “Near optimal signal recovery from random projections: Universal encoding strategies,” IEEE Trans. Inf. Theory 52, 5406-5425 (2004).

[CrossRef]

M. H. Li, H. Q. Yang, and H. Kudo, “An accurate iterative reconstruction algorithm for sparse objects: Application to 3D blood vessel reconstruction from a limited number of projections,” Phys. Med. Biol. 47, 2599-2609 (2002).

[CrossRef]
[PubMed]

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 2001).

[CrossRef]

M. P. Andre, P. J. Martin, G. P. Otto, L. K. Olson, T. K. Barrett, B. A. Spivey, and D. A. Palmer, “A new consideration of diffraction computed tomography for breast imaging: Studies in phantoms and patients,” Acoust. Imaging 21, 379-390 (1995).

V. E. Kunitsyn, E. S. Andreeva, E. D. Tereschenko, B. Z. Khudukon, and T. Nygren, “Investigations of the ionosphere by satellite radiotomography,” Int. J. Imaging Syst. Technol. 5, 112-127 (1994).

[CrossRef]

A. Devaney, “Geophysical diffraction tomography,” IEEE Trans. Geosci. Remote Sens. 22, 3-13 (1984).

[CrossRef]

M. Slaney and A. C. Kak, “Diffraction tomography,” in Inverse Optics, Vol. 14, A.J.Devaney, ed. (SPIE, 1983), pp. 2-19.

S. X. Pan and A. C. Kak, “A computational study of reconstruction algorithms for diffraction tomography: Interpolation versus filtered backpropagation,” IEEE Trans. Acoust., Speech, Signal Process. 31, 1262-1275 (1983).

[CrossRef]

A. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336-350 (1982).

[CrossRef]
[PubMed]

R. Mueller, M. Kaveh, and G. Wade, “Reconstructive tomography and applications to ultrasonics,” in Proc. IEEE 67, 567-587 (1979).

[CrossRef]

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153-156 (1969).

[CrossRef]

M. P. Andre, P. J. Martin, G. P. Otto, L. K. Olson, T. K. Barrett, B. A. Spivey, and D. A. Palmer, “A new consideration of diffraction computed tomography for breast imaging: Studies in phantoms and patients,” Acoust. Imaging 21, 379-390 (1995).

V. E. Kunitsyn, E. S. Andreeva, E. D. Tereschenko, B. Z. Khudukon, and T. Nygren, “Investigations of the ionosphere by satellite radiotomography,” Int. J. Imaging Syst. Technol. 5, 112-127 (1994).

[CrossRef]

M. P. Andre, P. J. Martin, G. P. Otto, L. K. Olson, T. K. Barrett, B. A. Spivey, and D. A. Palmer, “A new consideration of diffraction computed tomography for breast imaging: Studies in phantoms and patients,” Acoust. Imaging 21, 379-390 (1995).

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489-509 (2006).

[CrossRef]

E. Candes and T. Tao, “Near optimal signal recovery from random projections: Universal encoding strategies,” IEEE Trans. Inf. Theory 52, 5406-5425 (2004).

[CrossRef]

A. Devaney, “Geophysical diffraction tomography,” IEEE Trans. Geosci. Remote Sens. 22, 3-13 (1984).

[CrossRef]

A. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336-350 (1982).

[CrossRef]
[PubMed]

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 2001).

[CrossRef]

S. X. Pan and A. C. Kak, “A computational study of reconstruction algorithms for diffraction tomography: Interpolation versus filtered backpropagation,” IEEE Trans. Acoust., Speech, Signal Process. 31, 1262-1275 (1983).

[CrossRef]

M. Slaney and A. C. Kak, “Diffraction tomography,” in Inverse Optics, Vol. 14, A.J.Devaney, ed. (SPIE, 1983), pp. 2-19.

E. Y. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 1-21 (2006).

R. Mueller, M. Kaveh, and G. Wade, “Reconstructive tomography and applications to ultrasonics,” in Proc. IEEE 67, 567-587 (1979).

[CrossRef]

V. E. Kunitsyn, E. S. Andreeva, E. D. Tereschenko, B. Z. Khudukon, and T. Nygren, “Investigations of the ionosphere by satellite radiotomography,” Int. J. Imaging Syst. Technol. 5, 112-127 (1994).

[CrossRef]

M. H. Li, H. Q. Yang, and H. Kudo, “An accurate iterative reconstruction algorithm for sparse objects: Application to 3D blood vessel reconstruction from a limited number of projections,” Phys. Med. Biol. 47, 2599-2609 (2002).

[CrossRef]
[PubMed]

V. E. Kunitsyn, E. S. Andreeva, E. D. Tereschenko, B. Z. Khudukon, and T. Nygren, “Investigations of the ionosphere by satellite radiotomography,” Int. J. Imaging Syst. Technol. 5, 112-127 (1994).

[CrossRef]

M. H. Li, H. Q. Yang, and H. Kudo, “An accurate iterative reconstruction algorithm for sparse objects: Application to 3D blood vessel reconstruction from a limited number of projections,” Phys. Med. Biol. 47, 2599-2609 (2002).

[CrossRef]
[PubMed]

M. P. Andre, P. J. Martin, G. P. Otto, L. K. Olson, T. K. Barrett, B. A. Spivey, and D. A. Palmer, “A new consideration of diffraction computed tomography for breast imaging: Studies in phantoms and patients,” Acoust. Imaging 21, 379-390 (1995).

R. Mueller, M. Kaveh, and G. Wade, “Reconstructive tomography and applications to ultrasonics,” in Proc. IEEE 67, 567-587 (1979).

[CrossRef]

V. E. Kunitsyn, E. S. Andreeva, E. D. Tereschenko, B. Z. Khudukon, and T. Nygren, “Investigations of the ionosphere by satellite radiotomography,” Int. J. Imaging Syst. Technol. 5, 112-127 (1994).

[CrossRef]

M. P. Andre, P. J. Martin, G. P. Otto, L. K. Olson, T. K. Barrett, B. A. Spivey, and D. A. Palmer, “A new consideration of diffraction computed tomography for breast imaging: Studies in phantoms and patients,” Acoust. Imaging 21, 379-390 (1995).

M. P. Andre, P. J. Martin, G. P. Otto, L. K. Olson, T. K. Barrett, B. A. Spivey, and D. A. Palmer, “A new consideration of diffraction computed tomography for breast imaging: Studies in phantoms and patients,” Acoust. Imaging 21, 379-390 (1995).

M. P. Andre, P. J. Martin, G. P. Otto, L. K. Olson, T. K. Barrett, B. A. Spivey, and D. A. Palmer, “A new consideration of diffraction computed tomography for breast imaging: Studies in phantoms and patients,” Acoust. Imaging 21, 379-390 (1995).

S. X. Pan and A. C. Kak, “A computational study of reconstruction algorithms for diffraction tomography: Interpolation versus filtered backpropagation,” IEEE Trans. Acoust., Speech, Signal Process. 31, 1262-1275 (1983).

[CrossRef]

E. Y. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 1-21 (2006).

X. Pan and M. A. Anastasio, “Minimal-scan filtered backpropagation algorithms for diffraction tomography,” J. Opt. Soc. Am. A 16, 2896-2903 (1999).

[CrossRef]

X. Pan, “Unified reconstruction theory for diffraction tomography, with consideration of noise control,” J. Opt. Soc. Am. A 15, 2312-2326 (1998).

[CrossRef]

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489-509 (2006).

[CrossRef]

E. Y. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 1-21 (2006).

E. Y. Sidky, University of Chicago, Department of Radiology, 5841 S. Maryland Ave. MC2026, Chicago, Illinois 60637, USA, and X. Pan are preparing a manuscript to be called “Image reconstruction in circular cone-beam computed tomography by total variation minimization.”

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 2001).

[CrossRef]

M. Slaney and A. C. Kak, “Diffraction tomography,” in Inverse Optics, Vol. 14, A.J.Devaney, ed. (SPIE, 1983), pp. 2-19.

M. P. Andre, P. J. Martin, G. P. Otto, L. K. Olson, T. K. Barrett, B. A. Spivey, and D. A. Palmer, “A new consideration of diffraction computed tomography for breast imaging: Studies in phantoms and patients,” Acoust. Imaging 21, 379-390 (1995).

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489-509 (2006).

[CrossRef]

E. Candes and T. Tao, “Near optimal signal recovery from random projections: Universal encoding strategies,” IEEE Trans. Inf. Theory 52, 5406-5425 (2004).

[CrossRef]

V. E. Kunitsyn, E. S. Andreeva, E. D. Tereschenko, B. Z. Khudukon, and T. Nygren, “Investigations of the ionosphere by satellite radiotomography,” Int. J. Imaging Syst. Technol. 5, 112-127 (1994).

[CrossRef]

R. Mueller, M. Kaveh, and G. Wade, “Reconstructive tomography and applications to ultrasonics,” in Proc. IEEE 67, 567-587 (1979).

[CrossRef]

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153-156 (1969).

[CrossRef]

M. H. Li, H. Q. Yang, and H. Kudo, “An accurate iterative reconstruction algorithm for sparse objects: Application to 3D blood vessel reconstruction from a limited number of projections,” Phys. Med. Biol. 47, 2599-2609 (2002).

[CrossRef]
[PubMed]

M. P. Andre, P. J. Martin, G. P. Otto, L. K. Olson, T. K. Barrett, B. A. Spivey, and D. A. Palmer, “A new consideration of diffraction computed tomography for breast imaging: Studies in phantoms and patients,” Acoust. Imaging 21, 379-390 (1995).

S. X. Pan and A. C. Kak, “A computational study of reconstruction algorithms for diffraction tomography: Interpolation versus filtered backpropagation,” IEEE Trans. Acoust., Speech, Signal Process. 31, 1262-1275 (1983).

[CrossRef]

A. Devaney, “Geophysical diffraction tomography,” IEEE Trans. Geosci. Remote Sens. 22, 3-13 (1984).

[CrossRef]

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489-509 (2006).

[CrossRef]

E. Candes and T. Tao, “Near optimal signal recovery from random projections: Universal encoding strategies,” IEEE Trans. Inf. Theory 52, 5406-5425 (2004).

[CrossRef]

V. E. Kunitsyn, E. S. Andreeva, E. D. Tereschenko, B. Z. Khudukon, and T. Nygren, “Investigations of the ionosphere by satellite radiotomography,” Int. J. Imaging Syst. Technol. 5, 112-127 (1994).

[CrossRef]

P. Guo and A. J. Devaney, “Comparison of reconstruction algorithms for optical diffraction tomography,” J. Opt. Soc. Am. A 22, 2338-2347 (2005).

[CrossRef]

X. Pan and M. A. Anastasio, “Minimal-scan filtered backpropagation algorithms for diffraction tomography,” J. Opt. Soc. Am. A 16, 2896-2903 (1999).

[CrossRef]

X. Pan, “Unified reconstruction theory for diffraction tomography, with consideration of noise control,” J. Opt. Soc. Am. A 15, 2312-2326 (1998).

[CrossRef]

E. Y. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 1-21 (2006).

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153-156 (1969).

[CrossRef]

M. H. Li, H. Q. Yang, and H. Kudo, “An accurate iterative reconstruction algorithm for sparse objects: Application to 3D blood vessel reconstruction from a limited number of projections,” Phys. Med. Biol. 47, 2599-2609 (2002).

[CrossRef]
[PubMed]

R. Mueller, M. Kaveh, and G. Wade, “Reconstructive tomography and applications to ultrasonics,” in Proc. IEEE 67, 567-587 (1979).

[CrossRef]

A. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336-350 (1982).

[CrossRef]
[PubMed]

M. Slaney and A. C. Kak, “Diffraction tomography,” in Inverse Optics, Vol. 14, A.J.Devaney, ed. (SPIE, 1983), pp. 2-19.

E. Y. Sidky, University of Chicago, Department of Radiology, 5841 S. Maryland Ave. MC2026, Chicago, Illinois 60637, USA, and X. Pan are preparing a manuscript to be called “Image reconstruction in circular cone-beam computed tomography by total variation minimization.”

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 2001).

[CrossRef]