Abstract

Light scattering by a spherical particle with radial anisotropy is discussed by extending Mie theory to diffraction by an anisotropic sphere, including both the electric and the magnetic anisotropy ratio. It is shown that radial anisotropy may lead to great modifications in scattering efficiencies and field enhancement, elucidating the importance of anisotropies in the control of scattering. The capacity for nondissipating damping is demonstrated for anisotropic spheres with different signs in radial and transversal permittivities.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Nelson, Phase Transitions and Critical Phenomena (Academic, 1983).
  2. S. Alexander and J. McTague, “Should all crystals be bcc? Landau theory of solidification and crystal nucleation,” Phys. Rev. Lett. 41, 702-705 (1978).
    [CrossRef]
  3. J. Chakrabarti, H. R. Krishnamurthy, A. K. Sood, and S. Sengupta, “Reentrant melting in laser field modulated colloidal suspensions,” Phys. Rev. Lett. 75, 2232-2235 (1995).
    [CrossRef] [PubMed]
  4. C. Reichhardt and C. J. Olson, “Novel colloidal crystalline states on two-dimensional periodic substrates,” Phys. Rev. Lett. 88, 248301 (2002).
    [CrossRef] [PubMed]
  5. J. D. Johnson, M. S. Shaw, and B. L. Holian, “The thermodynamics of dense fluid nitrogen by molecular dynamics,” J. Chem. Phys. 80, 1279-1294 (1984).
    [CrossRef]
  6. L. Joly, C. Ybert, E. Trizac, and L. Bocquet, “Hydrodynamics within the electric double layer on slipping surfaces,” Phys. Rev. Lett. 93, 257805 (2004).
    [CrossRef]
  7. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
    [CrossRef] [PubMed]
  8. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794-9804 (2006).
    [CrossRef] [PubMed]
  9. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
    [CrossRef]
  10. L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55, 403-409 (2007).
    [CrossRef]
  11. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery functional regeneration after laser axotomy,” Nature 432, 822-822 (2004).
    [CrossRef] [PubMed]
  12. B. S. Luk'yanchuk and C. W. Qiu, “Enhanced scattering efficiencies in spherical particles with weakly dissipating anisotropic materials,” Appl. Phys. A (2008), doi: 10.1007/s00339-008-4572-5.
  13. M. I. Tribelsky and B. S. Luk'yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97, 263902 (2006).
    [CrossRef]
  14. B. S. Luk'yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259-264 (2007).
    [CrossRef]
  15. M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
    [CrossRef] [PubMed]
  16. P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B 73, 165125 (2006).
    [CrossRef]
  17. B. Stout, M. Nevière, and E. Popov, “Mie scattering by an anisotropic object. Part I. Homogeneous sphere,” J. Opt. Soc. Am. A 23, 1111-1123 (2006).
    [CrossRef]
  18. B. Stout, M. Nevière, and E. Popov, “Mie scattering by an anisotropic object. Part II. Arbitrary-shaped object: differential theory,” J. Opt. Soc. Am. A 23, 1124-1134 (2006).
    [CrossRef]
  19. B. Stout, M. Nevière, and E. Popov, “T matrix of the homogeneous anisotropic sphere: applications to orientation-averaged resonant scattering,” J. Opt. Soc. Am. A 24, 1120-1130 (2007).
    [CrossRef]
  20. C. W. Qiu, L. W. Li, Q. Wu, and T. S. Yeo, “Field representations in general gyrotropic media in spherical coordinates,” IEEE Antennas Wireless Propag. Lett. 4, 467-470 (2005).
    [CrossRef]
  21. L. D. Landau, “On electron plasma oscillations,” Sov. Phys. JETP 16, 574 (1946) (in Russian).
  22. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 2002).
  23. Z. M. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
    [CrossRef] [PubMed]

2008 (2)

B. S. Luk'yanchuk and C. W. Qiu, “Enhanced scattering efficiencies in spherical particles with weakly dissipating anisotropic materials,” Appl. Phys. A (2008), doi: 10.1007/s00339-008-4572-5.

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
[CrossRef] [PubMed]

2007 (4)

L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55, 403-409 (2007).
[CrossRef]

B. Stout, M. Nevière, and E. Popov, “T matrix of the homogeneous anisotropic sphere: applications to orientation-averaged resonant scattering,” J. Opt. Soc. Am. A 24, 1120-1130 (2007).
[CrossRef]

B. S. Luk'yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

Z. M. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

2006 (7)

M. I. Tribelsky and B. S. Luk'yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97, 263902 (2006).
[CrossRef]

P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B 73, 165125 (2006).
[CrossRef]

B. Stout, M. Nevière, and E. Popov, “Mie scattering by an anisotropic object. Part I. Homogeneous sphere,” J. Opt. Soc. Am. A 23, 1111-1123 (2006).
[CrossRef]

B. Stout, M. Nevière, and E. Popov, “Mie scattering by an anisotropic object. Part II. Arbitrary-shaped object: differential theory,” J. Opt. Soc. Am. A 23, 1124-1134 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794-9804 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

2005 (1)

C. W. Qiu, L. W. Li, Q. Wu, and T. S. Yeo, “Field representations in general gyrotropic media in spherical coordinates,” IEEE Antennas Wireless Propag. Lett. 4, 467-470 (2005).
[CrossRef]

2004 (2)

L. Joly, C. Ybert, E. Trizac, and L. Bocquet, “Hydrodynamics within the electric double layer on slipping surfaces,” Phys. Rev. Lett. 93, 257805 (2004).
[CrossRef]

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery functional regeneration after laser axotomy,” Nature 432, 822-822 (2004).
[CrossRef] [PubMed]

2002 (2)

C. Reichhardt and C. J. Olson, “Novel colloidal crystalline states on two-dimensional periodic substrates,” Phys. Rev. Lett. 88, 248301 (2002).
[CrossRef] [PubMed]

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 2002).

1995 (1)

J. Chakrabarti, H. R. Krishnamurthy, A. K. Sood, and S. Sengupta, “Reentrant melting in laser field modulated colloidal suspensions,” Phys. Rev. Lett. 75, 2232-2235 (1995).
[CrossRef] [PubMed]

1984 (1)

J. D. Johnson, M. S. Shaw, and B. L. Holian, “The thermodynamics of dense fluid nitrogen by molecular dynamics,” J. Chem. Phys. 80, 1279-1294 (1984).
[CrossRef]

1983 (1)

D. R. Nelson, Phase Transitions and Critical Phenomena (Academic, 1983).

1978 (1)

S. Alexander and J. McTague, “Should all crystals be bcc? Landau theory of solidification and crystal nucleation,” Phys. Rev. Lett. 41, 702-705 (1978).
[CrossRef]

1946 (1)

L. D. Landau, “On electron plasma oscillations,” Sov. Phys. JETP 16, 574 (1946) (in Russian).

Alexander, S.

S. Alexander and J. McTague, “Should all crystals be bcc? Landau theory of solidification and crystal nucleation,” Phys. Rev. Lett. 41, 702-705 (1978).
[CrossRef]

Ben-Yakar, A.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery functional regeneration after laser axotomy,” Nature 432, 822-822 (2004).
[CrossRef] [PubMed]

Bermel, P.

P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B 73, 165125 (2006).
[CrossRef]

Bocquet, L.

L. Joly, C. Ybert, E. Trizac, and L. Bocquet, “Hydrodynamics within the electric double layer on slipping surfaces,” Phys. Rev. Lett. 93, 257805 (2004).
[CrossRef]

Boyd, R. W.

Z. M. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Chakrabarti, J.

J. Chakrabarti, H. R. Krishnamurthy, A. K. Sood, and S. Sengupta, “Reentrant melting in laser field modulated colloidal suspensions,” Phys. Rev. Lett. 75, 2232-2235 (1995).
[CrossRef] [PubMed]

Chisholm, A. D.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery functional regeneration after laser axotomy,” Nature 432, 822-822 (2004).
[CrossRef] [PubMed]

Chong, T. C.

B. S. Luk'yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

Cinar, H.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery functional regeneration after laser axotomy,” Nature 432, 822-822 (2004).
[CrossRef] [PubMed]

Cinar, H. N.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery functional regeneration after laser axotomy,” Nature 432, 822-822 (2004).
[CrossRef] [PubMed]

Cummer, S. A.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Fink, Y.

P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B 73, 165125 (2006).
[CrossRef]

Flach, S.

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
[CrossRef] [PubMed]

Gao, L.

L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55, 403-409 (2007).
[CrossRef]

Gauthier, D. J.

Z. M. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Gorbach, A. V.

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
[CrossRef] [PubMed]

Holian, B. L.

J. D. Johnson, M. S. Shaw, and B. L. Holian, “The thermodynamics of dense fluid nitrogen by molecular dynamics,” J. Chem. Phys. 80, 1279-1294 (1984).
[CrossRef]

Hong, M. H.

B. S. Luk'yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

Jin, Y.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery functional regeneration after laser axotomy,” Nature 432, 822-822 (2004).
[CrossRef] [PubMed]

Joannopoulos, J. D.

P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B 73, 165125 (2006).
[CrossRef]

Johnson, J. D.

J. D. Johnson, M. S. Shaw, and B. L. Holian, “The thermodynamics of dense fluid nitrogen by molecular dynamics,” J. Chem. Phys. 80, 1279-1294 (1984).
[CrossRef]

Joly, L.

L. Joly, C. Ybert, E. Trizac, and L. Bocquet, “Hydrodynamics within the electric double layer on slipping surfaces,” Phys. Rev. Lett. 93, 257805 (2004).
[CrossRef]

Kivshar, Y. S.

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
[CrossRef] [PubMed]

Krishnamurthy, H. R.

J. Chakrabarti, H. R. Krishnamurthy, A. K. Sood, and S. Sengupta, “Reentrant melting in laser field modulated colloidal suspensions,” Phys. Rev. Lett. 75, 2232-2235 (1995).
[CrossRef] [PubMed]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 2002).

L. D. Landau, “On electron plasma oscillations,” Sov. Phys. JETP 16, 574 (1946) (in Russian).

Li, L. W.

C. W. Qiu, L. W. Li, Q. Wu, and T. S. Yeo, “Field representations in general gyrotropic media in spherical coordinates,” IEEE Antennas Wireless Propag. Lett. 4, 467-470 (2005).
[CrossRef]

Lidorikis, E.

P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B 73, 165125 (2006).
[CrossRef]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 2002).

Luk'yanchuk, B. S.

B. S. Luk'yanchuk and C. W. Qiu, “Enhanced scattering efficiencies in spherical particles with weakly dissipating anisotropic materials,” Appl. Phys. A (2008), doi: 10.1007/s00339-008-4572-5.

B. S. Luk'yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

M. I. Tribelsky and B. S. Luk'yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97, 263902 (2006).
[CrossRef]

McTague, J.

S. Alexander and J. McTague, “Should all crystals be bcc? Landau theory of solidification and crystal nucleation,” Phys. Rev. Lett. 41, 702-705 (1978).
[CrossRef]

Miroshnichenko, A. E.

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
[CrossRef] [PubMed]

Nelson, D. R.

D. R. Nelson, Phase Transitions and Critical Phenomena (Academic, 1983).

Nevière, M.

Olson, C. J.

C. Reichhardt and C. J. Olson, “Novel colloidal crystalline states on two-dimensional periodic substrates,” Phys. Rev. Lett. 88, 248301 (2002).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794-9804 (2006).
[CrossRef] [PubMed]

Popa, B. I.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Popov, E.

Qiu, C. W.

B. S. Luk'yanchuk and C. W. Qiu, “Enhanced scattering efficiencies in spherical particles with weakly dissipating anisotropic materials,” Appl. Phys. A (2008), doi: 10.1007/s00339-008-4572-5.

C. W. Qiu, L. W. Li, Q. Wu, and T. S. Yeo, “Field representations in general gyrotropic media in spherical coordinates,” IEEE Antennas Wireless Propag. Lett. 4, 467-470 (2005).
[CrossRef]

Reichhardt, C.

C. Reichhardt and C. J. Olson, “Novel colloidal crystalline states on two-dimensional periodic substrates,” Phys. Rev. Lett. 88, 248301 (2002).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794-9804 (2006).
[CrossRef] [PubMed]

Sengupta, S.

J. Chakrabarti, H. R. Krishnamurthy, A. K. Sood, and S. Sengupta, “Reentrant melting in laser field modulated colloidal suspensions,” Phys. Rev. Lett. 75, 2232-2235 (1995).
[CrossRef] [PubMed]

Shaw, M. S.

J. D. Johnson, M. S. Shaw, and B. L. Holian, “The thermodynamics of dense fluid nitrogen by molecular dynamics,” J. Chem. Phys. 80, 1279-1294 (1984).
[CrossRef]

Shi, L. P.

B. S. Luk'yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794-9804 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Sood, A. K.

J. Chakrabarti, H. R. Krishnamurthy, A. K. Sood, and S. Sengupta, “Reentrant melting in laser field modulated colloidal suspensions,” Phys. Rev. Lett. 75, 2232-2235 (1995).
[CrossRef] [PubMed]

Stout, B.

Tribelsky, M. I.

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
[CrossRef] [PubMed]

B. S. Luk'yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

M. I. Tribelsky and B. S. Luk'yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97, 263902 (2006).
[CrossRef]

Trizac, E.

L. Joly, C. Ybert, E. Trizac, and L. Bocquet, “Hydrodynamics within the electric double layer on slipping surfaces,” Phys. Rev. Lett. 93, 257805 (2004).
[CrossRef]

Wang, Z. B.

B. S. Luk'yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

Wu, Q.

C. W. Qiu, L. W. Li, Q. Wu, and T. S. Yeo, “Field representations in general gyrotropic media in spherical coordinates,” IEEE Antennas Wireless Propag. Lett. 4, 467-470 (2005).
[CrossRef]

Yanik, M. F.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery functional regeneration after laser axotomy,” Nature 432, 822-822 (2004).
[CrossRef] [PubMed]

Ybert, C.

L. Joly, C. Ybert, E. Trizac, and L. Bocquet, “Hydrodynamics within the electric double layer on slipping surfaces,” Phys. Rev. Lett. 93, 257805 (2004).
[CrossRef]

Yeo, T. S.

C. W. Qiu, L. W. Li, Q. Wu, and T. S. Yeo, “Field representations in general gyrotropic media in spherical coordinates,” IEEE Antennas Wireless Propag. Lett. 4, 467-470 (2005).
[CrossRef]

Yu, X. P.

L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55, 403-409 (2007).
[CrossRef]

Zhou, Y.

B. S. Luk'yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

Zhu, Z. M.

Z. M. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Appl. Phys. A (1)

B. S. Luk'yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

Eur. Phys. J. B (1)

L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55, 403-409 (2007).
[CrossRef]

IEEE Antennas Wireless Propag. Lett. (1)

C. W. Qiu, L. W. Li, Q. Wu, and T. S. Yeo, “Field representations in general gyrotropic media in spherical coordinates,” IEEE Antennas Wireless Propag. Lett. 4, 467-470 (2005).
[CrossRef]

J. Chem. Phys. (1)

J. D. Johnson, M. S. Shaw, and B. L. Holian, “The thermodynamics of dense fluid nitrogen by molecular dynamics,” J. Chem. Phys. 80, 1279-1294 (1984).
[CrossRef]

J. Opt. Soc. Am. A (3)

Nature (1)

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery functional regeneration after laser axotomy,” Nature 432, 822-822 (2004).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (1)

P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B 73, 165125 (2006).
[CrossRef]

Phys. Rev. E (1)

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Phys. Rev. Lett. (6)

L. Joly, C. Ybert, E. Trizac, and L. Bocquet, “Hydrodynamics within the electric double layer on slipping surfaces,” Phys. Rev. Lett. 93, 257805 (2004).
[CrossRef]

S. Alexander and J. McTague, “Should all crystals be bcc? Landau theory of solidification and crystal nucleation,” Phys. Rev. Lett. 41, 702-705 (1978).
[CrossRef]

J. Chakrabarti, H. R. Krishnamurthy, A. K. Sood, and S. Sengupta, “Reentrant melting in laser field modulated colloidal suspensions,” Phys. Rev. Lett. 75, 2232-2235 (1995).
[CrossRef] [PubMed]

C. Reichhardt and C. J. Olson, “Novel colloidal crystalline states on two-dimensional periodic substrates,” Phys. Rev. Lett. 88, 248301 (2002).
[CrossRef] [PubMed]

M. I. Tribelsky and B. S. Luk'yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97, 263902 (2006).
[CrossRef]

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
[CrossRef] [PubMed]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

Z. M. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

L. D. Landau, “On electron plasma oscillations,” Sov. Phys. JETP 16, 574 (1946) (in Russian).

Other (3)

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 2002).

D. R. Nelson, Phase Transitions and Critical Phenomena (Academic, 1983).

B. S. Luk'yanchuk and C. W. Qiu, “Enhanced scattering efficiencies in spherical particles with weakly dissipating anisotropic materials,” Appl. Phys. A (2008), doi: 10.1007/s00339-008-4572-5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Normalized backscattering efficiency versus k 0 a at the same scale of radial oscillation where only electric anisotropy ratio is present. μ n = μ t = 1 + 0.2 i and ϵ n = 2 + 0.6 i are assumed for all curves. Curve 1 (red): ϵ t = 2 + 0.6 i ( A e = 1 ) . Curve 2 (olive): ϵ t = 4 + 1.2 i ( A e = 2 ) . Curve 3 (black): ϵ t = 8 + 2.4 i ( A e = 4 ) . Curve 4 (blue): ϵ t = 4 + 1.2 i ( A e = 1.67 + 1.1 i ) . Curve 5 (violet): ϵ t = 4 1.2 i ( A e = 2 ) . Curve 1 corresponds to the isotropic case. In curve 5, one can see light enhancement in anisotropic spheres at 15.44 THz (i.e., the size parameter at 9.7), and the amplitude of backscattering is shown with normalization factor of 10 3 (i.e., maximal amplitude is above 300).

Fig. 2
Fig. 2

Normalized backscattering efficiency with joint anisotropy ratios of A e and A m . The same radial oscillation is assumed, ϵ n = 2 + 0.6 i , for all curves. Curve 1 (red): ϵ t = 4 + 1.2 i ( A e = 2 ) , μ r = 1 + 0.2 i , μ t = 1.5 + 0.3 i ( A m = 1.5 ) . Curve 2 (olive): ϵ t = 3.76 + 1.2 i ( A e = 2 + 0.4 i ) , μ r = 1 + 0.2 i , μ t = 1.5 + 0.3 i ( A m = 1.5 ) . Curve 3 (blue): ϵ t = 4 + 1.2 i ( A e = 1.67 + 1.1 i ) , μ r = 1 + 0.2 i , μ t = 1.5 + 0.3 i ( A m = 1.38 + 0.58 i ) . Curve 4 (violet): ϵ t = 4 1.2 i ( A e = 2 ) , μ r = 1 + 0.2 i , μ t = 1.5 0.3 i ( A m = 1.5 ) . For the last case, one can see light enhancement in active materials with negative refractive index at 9.8 THz , i.e., size parameter at 6.16. Several enhanced backscatterings also exist at other frequencies.

Fig. 3
Fig. 3

Variation of backscattering efficiency versus electric anisotropy. Points in (a) refer to the isotropic case. Radial and transverse oscillations are kept unchanged, respectively, in (a) and (b).

Fig. 4
Fig. 4

Scattering efficiencies for nondissipative anisotropic spheres with strong radial oscillation where the nondissipative damping arises: (a) nonzero absorption cross section for nondissipative anisotropic particles; (b) highly oscillating backscattering cross section when the nondissipative damping occurs. The radial oscillation is assumed to be ϵ n = 17 , and the transverse oscillation ϵ t = 2.1 is near surface-plasmon resonance. It shows that the damping arises within a certain frequency range even for a nondissipative anisotropic sphere that has a strong radial oscillation and a transverse oscillation near the surface-plasmon resonance.

Fig. 5
Fig. 5

Scattering efficiencies for nondissipative anisotropic spheres near surface-plasmon resonance. Both radial and transversal oscillations are near surface-plasmon resonance, and three electric anisotropy ratios (i.e., A e < 1 , A e = 1 , and A e > 1 ) are particularly studied to demonstrate the significance of anisotropy in (a) scattering cross section and (b) backscattering cross section when the anisotropic particles are near surface-plasmon resonance.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ϵ ¯ = ( ϵ n 0 0 0 ϵ t 0 0 0 ϵ t ) , μ ¯ = ( μ n 0 0 0 μ t 0 0 0 μ t ) ,
ϵ n ϵ t 2 Φ TM r 2 + 1 r 2 sin θ θ ( sin θ Φ TM θ ) + 1 r 2 sin 2 θ 2 Φ TM ϕ 2 + ω 2 c 2 ϵ n μ t Φ TM = 0 ,
μ n μ t 2 Φ TE r 2 + 1 r 2 sin θ θ ( sin θ Φ TE θ )
+ 1 r 2 sin 2 θ 2 Φ TE ϕ 2 + ω 2 c 2 ϵ t μ n Φ TE = 0 .
a l = R l ( a ) R l ( a ) + i I l ( a ) , b l = R l ( b ) R l ( b ) + i I l ( b ) ,
R l ( a ) = n t ψ l ( q ) ψ v 1 ( n t q ) μ t ψ l ( q ) ψ v 1 ( n t q ) ,
I l ( a ) = n t χ l ( q ) ψ v 1 ( n t q ) μ t χ l ( q ) ψ v 1 ( n t q ) ,
R l ( b ) = n t ψ l ( q ) ψ v 2 ( n t q ) μ t ψ l ( q ) ψ v 2 ( n t q ) ,
I l ( b ) = n t χ l ( q ) ψ v 2 ( n t q ) μ t χ l ( q ) ψ v 2 ( n t q ) .

Metrics