Abstract

Forward light scattering of femtosecond pulses through strongly scattering media is investigated experimentally and numerically. Computations are based on a semi-Monte Carlo method including polarization effects when experiments depend on a Ti:sapphire regenerative amplifier (100fs, 1kHz, 1mJ@800nm). The temporal separation between ballistic light and scattered light is exhibited and used to perform optical depth measurements up to 22 (transmission factor of 1010). Quantitative comparisons between experiments and Monte Carlo simulations show a good agreement. Temporal forward scattered light evolutions with concentration and particle size are presented. Numerical results show that the early scattered light contains information on particle size, opening the way to particle sizing in strongly scattering media.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Triballier, C. Dumouchel, and J. Cousin, “A technical study on the Spraytec performances: Influence of multiple light scattering and multi-modal drop-size distribution measurements,” Experientia 35, 347-356 (2003).
  2. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535-6546 (1992).
    [Crossref] [PubMed]
  3. H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154, 255-260 (1998).
    [Crossref]
  4. S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: Dependence on scattering anisotropy,” Opt. Commun. 241, 1-9 (2004).
    [Crossref]
  5. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Sciences (N.Y.) 253, 769-771 (1991).
    [Crossref]
  6. B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, and S. Jacques, “Potential of time-resolved reflectance measurements for noninvasive determination of tissue optical properties,” Proc. SPIE 1064, 97-106 (1989).
  7. M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, D. T. Delpy, “Spectral dependence of temporal point spread function in human tissues,” Appl. Opt. 32, 418-425 (1993).
    [Crossref] [PubMed]
  8. M. S. Patterson, B. Chance, and B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331-2336 (1989).
    [Crossref] [PubMed]
  9. C. Hauger, E. Baigar, T. Wilhelm, and W. Zinth, “Time-resolved backscattering of femtosecond pulses from scattering media: An experimental and numerical investigation,” Opt. Commun. 131, 351-358 (1996).
    [Crossref]
  10. C. Hauger, E. Baigar, and W. Zinth, “Induced backscattering due to reflecting surfaces in highly scattering media,” Opt. Commun. 133, 72-76 (1997).
    [Crossref]
  11. Z. Guo, J. Aber, B. A. Garetz, and S. Kumar, “Monte Carlo simulation and experiments of pulsed radiative transfer,” J. Quant. Spectrosc. Radiat. Transf. 73, 159-168 (2002).
    [Crossref]
  12. P. M. Podgaetsy, S. A. Tereshchenko, A. V. Smirnov, and N. S. Vorob'ev, “Bimodal temporal distribution of photons in ultra-short laser pulse passed through a turbid medium,” Opt. Commun. 180, 217-223 (2000).
    [Crossref]
  13. M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993).
  14. H. C. Van de Hulst, Multiple Light Scattering (Academic, 1980).
  15. T. Wriedt, “A review of elastic light scattering theories,” Part. Part. Syst. Charact. 15, 67-74 (1998).
    [Crossref]
  16. R. Siegel and J. Howell, Thermal Radiation Heat Transfer, 4th ed. (Taylor and Francis-Hemisphere, 2001).
  17. C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: Consideration of particle size effect,” Opt. Commun. 220, 237-245 (2003).
    [Crossref]
  18. C. Rozé, T. Girasole, G. Gréhan, L. Méès, L. Hespel, and A. Delfour, “Time-resolved propagation of femtosecond pulses in a dense scattering medium: Monte Carlo direct method,” in Proceedings of the Seventh International Congress on Optical Particle Characterization, Kyoto, Japan, August 1-5, 2004.
  19. L. Méès, G. Gouesbet, and G. Gréhan, “Scattering of laser pulsed plane wave or focused Gaussian beam by spheres,” Appl. Opt. 40, 2546-2550 (2001).
    [Crossref]
  20. L. Méès, G. Gouesbet, and G. Gréhan, “Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun. 194, 59-65 (2001).
    [Crossref]
  21. C. Calba, C. Rozé, T. Girasole, and L. Méès, “Monte Carlo simulation of the interaction between an ultra-short pulse and a dense scattering medium: Case of large size particle,” Opt. Commun. 265, 373-382 (2006).
    [Crossref]
  22. L. R. Poole, D. D. Venable, and J. W. Campbell, “Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems,” Appl. Opt. 20, 3653-3656 (1981).
    [Crossref] [PubMed]
  23. P. Bruscaglioni and G. Zaccanti, “Multiple scattering in dense media,” in Scattering in Volumes and Surfaces, M.Nieto-Vesperinas and J.C.Dainty, eds. (Elsevier, 1990), pp. 53-71.
  24. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  25. H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40, 400-412 (2001).
    [Crossref]
  26. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
    [Crossref]

2006 (1)

C. Calba, C. Rozé, T. Girasole, and L. Méès, “Monte Carlo simulation of the interaction between an ultra-short pulse and a dense scattering medium: Case of large size particle,” Opt. Commun. 265, 373-382 (2006).
[Crossref]

2004 (2)

C. Rozé, T. Girasole, G. Gréhan, L. Méès, L. Hespel, and A. Delfour, “Time-resolved propagation of femtosecond pulses in a dense scattering medium: Monte Carlo direct method,” in Proceedings of the Seventh International Congress on Optical Particle Characterization, Kyoto, Japan, August 1-5, 2004.

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: Dependence on scattering anisotropy,” Opt. Commun. 241, 1-9 (2004).
[Crossref]

2003 (3)

K. Triballier, C. Dumouchel, and J. Cousin, “A technical study on the Spraytec performances: Influence of multiple light scattering and multi-modal drop-size distribution measurements,” Experientia 35, 347-356 (2003).

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: Consideration of particle size effect,” Opt. Commun. 220, 237-245 (2003).
[Crossref]

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[Crossref]

2002 (1)

Z. Guo, J. Aber, B. A. Garetz, and S. Kumar, “Monte Carlo simulation and experiments of pulsed radiative transfer,” J. Quant. Spectrosc. Radiat. Transf. 73, 159-168 (2002).
[Crossref]

2001 (4)

2000 (1)

P. M. Podgaetsy, S. A. Tereshchenko, A. V. Smirnov, and N. S. Vorob'ev, “Bimodal temporal distribution of photons in ultra-short laser pulse passed through a turbid medium,” Opt. Commun. 180, 217-223 (2000).
[Crossref]

1998 (2)

T. Wriedt, “A review of elastic light scattering theories,” Part. Part. Syst. Charact. 15, 67-74 (1998).
[Crossref]

H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154, 255-260 (1998).
[Crossref]

1997 (1)

C. Hauger, E. Baigar, and W. Zinth, “Induced backscattering due to reflecting surfaces in highly scattering media,” Opt. Commun. 133, 72-76 (1997).
[Crossref]

1996 (1)

C. Hauger, E. Baigar, T. Wilhelm, and W. Zinth, “Time-resolved backscattering of femtosecond pulses from scattering media: An experimental and numerical investigation,” Opt. Commun. 131, 351-358 (1996).
[Crossref]

1993 (2)

1992 (1)

1991 (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Sciences (N.Y.) 253, 769-771 (1991).
[Crossref]

1990 (1)

P. Bruscaglioni and G. Zaccanti, “Multiple scattering in dense media,” in Scattering in Volumes and Surfaces, M.Nieto-Vesperinas and J.C.Dainty, eds. (Elsevier, 1990), pp. 53-71.

1989 (2)

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, and S. Jacques, “Potential of time-resolved reflectance measurements for noninvasive determination of tissue optical properties,” Proc. SPIE 1064, 97-106 (1989).

M. S. Patterson, B. Chance, and B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331-2336 (1989).
[Crossref] [PubMed]

1983 (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

1981 (1)

1980 (1)

H. C. Van de Hulst, Multiple Light Scattering (Academic, 1980).

Aber, J.

Z. Guo, J. Aber, B. A. Garetz, and S. Kumar, “Monte Carlo simulation and experiments of pulsed radiative transfer,” J. Quant. Spectrosc. Radiat. Transf. 73, 159-168 (2002).
[Crossref]

Alfano, R. R.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Sciences (N.Y.) 253, 769-771 (1991).
[Crossref]

Arridge, S. R.

Baigar, E.

C. Hauger, E. Baigar, and W. Zinth, “Induced backscattering due to reflecting surfaces in highly scattering media,” Opt. Commun. 133, 72-76 (1997).
[Crossref]

C. Hauger, E. Baigar, T. Wilhelm, and W. Zinth, “Time-resolved backscattering of femtosecond pulses from scattering media: An experimental and numerical investigation,” Opt. Commun. 131, 351-358 (1996).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bonner, R. F.

Brock, R. S.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[Crossref]

Bruscaglioni, P.

P. Bruscaglioni and G. Zaccanti, “Multiple scattering in dense media,” in Scattering in Volumes and Surfaces, M.Nieto-Vesperinas and J.C.Dainty, eds. (Elsevier, 1990), pp. 53-71.

Calba, C.

C. Calba, C. Rozé, T. Girasole, and L. Méès, “Monte Carlo simulation of the interaction between an ultra-short pulse and a dense scattering medium: Case of large size particle,” Opt. Commun. 265, 373-382 (2006).
[Crossref]

Campbell, J. W.

Chaikovskaya, L. I.

Chance, B.

Cope, M.

Cousin, J.

K. Triballier, C. Dumouchel, and J. Cousin, “A technical study on the Spraytec performances: Influence of multiple light scattering and multi-modal drop-size distribution measurements,” Experientia 35, 347-356 (2003).

Delfour, A.

C. Rozé, T. Girasole, G. Gréhan, L. Méès, L. Hespel, and A. Delfour, “Time-resolved propagation of femtosecond pulses in a dense scattering medium: Monte Carlo direct method,” in Proceedings of the Seventh International Congress on Optical Particle Characterization, Kyoto, Japan, August 1-5, 2004.

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: Consideration of particle size effect,” Opt. Commun. 220, 237-245 (2003).
[Crossref]

Delpy, D. T.

Dumouchel, C.

K. Triballier, C. Dumouchel, and J. Cousin, “A technical study on the Spraytec performances: Influence of multiple light scattering and multi-modal drop-size distribution measurements,” Experientia 35, 347-356 (2003).

Elwell, C. E.

Essenpreis, M.

Gandjbakhche, A. H.

Garetz, B. A.

Z. Guo, J. Aber, B. A. Garetz, and S. Kumar, “Monte Carlo simulation and experiments of pulsed radiative transfer,” J. Quant. Spectrosc. Radiat. Transf. 73, 159-168 (2002).
[Crossref]

Girasole, T.

C. Calba, C. Rozé, T. Girasole, and L. Méès, “Monte Carlo simulation of the interaction between an ultra-short pulse and a dense scattering medium: Case of large size particle,” Opt. Commun. 265, 373-382 (2006).
[Crossref]

C. Rozé, T. Girasole, G. Gréhan, L. Méès, L. Hespel, and A. Delfour, “Time-resolved propagation of femtosecond pulses in a dense scattering medium: Monte Carlo direct method,” in Proceedings of the Seventh International Congress on Optical Particle Characterization, Kyoto, Japan, August 1-5, 2004.

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: Consideration of particle size effect,” Opt. Commun. 220, 237-245 (2003).
[Crossref]

Gouesbet, G.

L. Méès, G. Gouesbet, and G. Gréhan, “Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun. 194, 59-65 (2001).
[Crossref]

L. Méès, G. Gouesbet, and G. Gréhan, “Scattering of laser pulsed plane wave or focused Gaussian beam by spheres,” Appl. Opt. 40, 2546-2550 (2001).
[Crossref]

Gréhan, G.

C. Rozé, T. Girasole, G. Gréhan, L. Méès, L. Hespel, and A. Delfour, “Time-resolved propagation of femtosecond pulses in a dense scattering medium: Monte Carlo direct method,” in Proceedings of the Seventh International Congress on Optical Particle Characterization, Kyoto, Japan, August 1-5, 2004.

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: Consideration of particle size effect,” Opt. Commun. 220, 237-245 (2003).
[Crossref]

L. Méès, G. Gouesbet, and G. Gréhan, “Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun. 194, 59-65 (2001).
[Crossref]

L. Méès, G. Gouesbet, and G. Gréhan, “Scattering of laser pulsed plane wave or focused Gaussian beam by spheres,” Appl. Opt. 40, 2546-2550 (2001).
[Crossref]

Guo, Z.

Z. Guo, J. Aber, B. A. Garetz, and S. Kumar, “Monte Carlo simulation and experiments of pulsed radiative transfer,” J. Quant. Spectrosc. Radiat. Transf. 73, 159-168 (2002).
[Crossref]

Hauger, C.

C. Hauger, E. Baigar, and W. Zinth, “Induced backscattering due to reflecting surfaces in highly scattering media,” Opt. Commun. 133, 72-76 (1997).
[Crossref]

C. Hauger, E. Baigar, T. Wilhelm, and W. Zinth, “Time-resolved backscattering of femtosecond pulses from scattering media: An experimental and numerical investigation,” Opt. Commun. 131, 351-358 (1996).
[Crossref]

Hefetz, Y.

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, and S. Jacques, “Potential of time-resolved reflectance measurements for noninvasive determination of tissue optical properties,” Proc. SPIE 1064, 97-106 (1989).

Hespel, L.

C. Rozé, T. Girasole, G. Gréhan, L. Méès, L. Hespel, and A. Delfour, “Time-resolved propagation of femtosecond pulses in a dense scattering medium: Monte Carlo direct method,” in Proceedings of the Seventh International Congress on Optical Particle Characterization, Kyoto, Japan, August 1-5, 2004.

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: Consideration of particle size effect,” Opt. Commun. 220, 237-245 (2003).
[Crossref]

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Sciences (N.Y.) 253, 769-771 (1991).
[Crossref]

Howell, J.

R. Siegel and J. Howell, Thermal Radiation Heat Transfer, 4th ed. (Taylor and Francis-Hemisphere, 2001).

Hu, X.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jacobs, K. M.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[Crossref]

Jacques, S.

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, and S. Jacques, “Potential of time-resolved reflectance measurements for noninvasive determination of tissue optical properties,” Proc. SPIE 1064, 97-106 (1989).

Katsev, I. L.

Kattawar, G. W.

Kumar, S.

Z. Guo, J. Aber, B. A. Garetz, and S. Kumar, “Monte Carlo simulation and experiments of pulsed radiative transfer,” J. Quant. Spectrosc. Radiat. Transf. 73, 159-168 (2002).
[Crossref]

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Sciences (N.Y.) 253, 769-771 (1991).
[Crossref]

Lu, J. Q.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[Crossref]

Ma, X.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[Crossref]

Madsen, S.

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, and S. Jacques, “Potential of time-resolved reflectance measurements for noninvasive determination of tissue optical properties,” Proc. SPIE 1064, 97-106 (1989).

Méès, L.

C. Calba, C. Rozé, T. Girasole, and L. Méès, “Monte Carlo simulation of the interaction between an ultra-short pulse and a dense scattering medium: Case of large size particle,” Opt. Commun. 265, 373-382 (2006).
[Crossref]

C. Rozé, T. Girasole, G. Gréhan, L. Méès, L. Hespel, and A. Delfour, “Time-resolved propagation of femtosecond pulses in a dense scattering medium: Monte Carlo direct method,” in Proceedings of the Seventh International Congress on Optical Particle Characterization, Kyoto, Japan, August 1-5, 2004.

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: Consideration of particle size effect,” Opt. Commun. 220, 237-245 (2003).
[Crossref]

L. Méès, G. Gouesbet, and G. Gréhan, “Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun. 194, 59-65 (2001).
[Crossref]

L. Méès, G. Gouesbet, and G. Gréhan, “Scattering of laser pulsed plane wave or focused Gaussian beam by spheres,” Appl. Opt. 40, 2546-2550 (2001).
[Crossref]

Modest, M. F.

M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993).

Mujumdar, S.

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: Dependence on scattering anisotropy,” Opt. Commun. 241, 1-9 (2004).
[Crossref]

Narayanan, A.

H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154, 255-260 (1998).
[Crossref]

Park, Y.

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, and S. Jacques, “Potential of time-resolved reflectance measurements for noninvasive determination of tissue optical properties,” Proc. SPIE 1064, 97-106 (1989).

Patterson, M.

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, and S. Jacques, “Potential of time-resolved reflectance measurements for noninvasive determination of tissue optical properties,” Proc. SPIE 1064, 97-106 (1989).

Patterson, M. S.

Podgaetsy, P. M.

P. M. Podgaetsy, S. A. Tereshchenko, A. V. Smirnov, and N. S. Vorob'ev, “Bimodal temporal distribution of photons in ultra-short laser pulse passed through a turbid medium,” Opt. Commun. 180, 217-223 (2000).
[Crossref]

Poole, L. R.

Prikhach, A. S.

Ramachandran, H.

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: Dependence on scattering anisotropy,” Opt. Commun. 241, 1-9 (2004).
[Crossref]

H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154, 255-260 (1998).
[Crossref]

Rozé, C.

C. Calba, C. Rozé, T. Girasole, and L. Méès, “Monte Carlo simulation of the interaction between an ultra-short pulse and a dense scattering medium: Case of large size particle,” Opt. Commun. 265, 373-382 (2006).
[Crossref]

C. Rozé, T. Girasole, G. Gréhan, L. Méès, L. Hespel, and A. Delfour, “Time-resolved propagation of femtosecond pulses in a dense scattering medium: Monte Carlo direct method,” in Proceedings of the Seventh International Congress on Optical Particle Characterization, Kyoto, Japan, August 1-5, 2004.

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: Consideration of particle size effect,” Opt. Commun. 220, 237-245 (2003).
[Crossref]

Schmitt, J. M.

Siegel, R.

R. Siegel and J. Howell, Thermal Radiation Heat Transfer, 4th ed. (Taylor and Francis-Hemisphere, 2001).

Smirnov, A. V.

P. M. Podgaetsy, S. A. Tereshchenko, A. V. Smirnov, and N. S. Vorob'ev, “Bimodal temporal distribution of photons in ultra-short laser pulse passed through a turbid medium,” Opt. Commun. 180, 217-223 (2000).
[Crossref]

Tereshchenko, S. A.

P. M. Podgaetsy, S. A. Tereshchenko, A. V. Smirnov, and N. S. Vorob'ev, “Bimodal temporal distribution of photons in ultra-short laser pulse passed through a turbid medium,” Opt. Commun. 180, 217-223 (2000).
[Crossref]

Triballier, K.

K. Triballier, C. Dumouchel, and J. Cousin, “A technical study on the Spraytec performances: Influence of multiple light scattering and multi-modal drop-size distribution measurements,” Experientia 35, 347-356 (2003).

Tynes, H. H.

Van de Hulst, H. C.

H. C. Van de Hulst, Multiple Light Scattering (Academic, 1980).

van der Zee, P.

Venable, D. D.

Vorob'ev, N. S.

P. M. Podgaetsy, S. A. Tereshchenko, A. V. Smirnov, and N. S. Vorob'ev, “Bimodal temporal distribution of photons in ultra-short laser pulse passed through a turbid medium,” Opt. Commun. 180, 217-223 (2000).
[Crossref]

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Sciences (N.Y.) 253, 769-771 (1991).
[Crossref]

Wilhelm, T.

C. Hauger, E. Baigar, T. Wilhelm, and W. Zinth, “Time-resolved backscattering of femtosecond pulses from scattering media: An experimental and numerical investigation,” Opt. Commun. 131, 351-358 (1996).
[Crossref]

Wilson, B.

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, and S. Jacques, “Potential of time-resolved reflectance measurements for noninvasive determination of tissue optical properties,” Proc. SPIE 1064, 97-106 (1989).

Wilson, B. C.

Wriedt, T.

T. Wriedt, “A review of elastic light scattering theories,” Part. Part. Syst. Charact. 15, 67-74 (1998).
[Crossref]

Yang, P.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[Crossref]

Zaccanti, G.

P. Bruscaglioni and G. Zaccanti, “Multiple scattering in dense media,” in Scattering in Volumes and Surfaces, M.Nieto-Vesperinas and J.C.Dainty, eds. (Elsevier, 1990), pp. 53-71.

Zege, E. P.

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Sciences (N.Y.) 253, 769-771 (1991).
[Crossref]

Zinth, W.

C. Hauger, E. Baigar, and W. Zinth, “Induced backscattering due to reflecting surfaces in highly scattering media,” Opt. Commun. 133, 72-76 (1997).
[Crossref]

C. Hauger, E. Baigar, T. Wilhelm, and W. Zinth, “Time-resolved backscattering of femtosecond pulses from scattering media: An experimental and numerical investigation,” Opt. Commun. 131, 351-358 (1996).
[Crossref]

Appl. Opt. (6)

Experientia (1)

K. Triballier, C. Dumouchel, and J. Cousin, “A technical study on the Spraytec performances: Influence of multiple light scattering and multi-modal drop-size distribution measurements,” Experientia 35, 347-356 (2003).

J. Quant. Spectrosc. Radiat. Transf. (1)

Z. Guo, J. Aber, B. A. Garetz, and S. Kumar, “Monte Carlo simulation and experiments of pulsed radiative transfer,” J. Quant. Spectrosc. Radiat. Transf. 73, 159-168 (2002).
[Crossref]

Opt. Commun. (8)

P. M. Podgaetsy, S. A. Tereshchenko, A. V. Smirnov, and N. S. Vorob'ev, “Bimodal temporal distribution of photons in ultra-short laser pulse passed through a turbid medium,” Opt. Commun. 180, 217-223 (2000).
[Crossref]

C. Hauger, E. Baigar, T. Wilhelm, and W. Zinth, “Time-resolved backscattering of femtosecond pulses from scattering media: An experimental and numerical investigation,” Opt. Commun. 131, 351-358 (1996).
[Crossref]

C. Hauger, E. Baigar, and W. Zinth, “Induced backscattering due to reflecting surfaces in highly scattering media,” Opt. Commun. 133, 72-76 (1997).
[Crossref]

H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154, 255-260 (1998).
[Crossref]

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: Dependence on scattering anisotropy,” Opt. Commun. 241, 1-9 (2004).
[Crossref]

L. Méès, G. Gouesbet, and G. Gréhan, “Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun. 194, 59-65 (2001).
[Crossref]

C. Calba, C. Rozé, T. Girasole, and L. Méès, “Monte Carlo simulation of the interaction between an ultra-short pulse and a dense scattering medium: Case of large size particle,” Opt. Commun. 265, 373-382 (2006).
[Crossref]

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: Consideration of particle size effect,” Opt. Commun. 220, 237-245 (2003).
[Crossref]

Part. Part. Syst. Charact. (1)

T. Wriedt, “A review of elastic light scattering theories,” Part. Part. Syst. Charact. 15, 67-74 (1998).
[Crossref]

Phys. Med. Biol. (1)

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[Crossref]

Proc. SPIE (1)

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, and S. Jacques, “Potential of time-resolved reflectance measurements for noninvasive determination of tissue optical properties,” Proc. SPIE 1064, 97-106 (1989).

Sciences (N.Y.) (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Sciences (N.Y.) 253, 769-771 (1991).
[Crossref]

Other (6)

R. Siegel and J. Howell, Thermal Radiation Heat Transfer, 4th ed. (Taylor and Francis-Hemisphere, 2001).

M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993).

H. C. Van de Hulst, Multiple Light Scattering (Academic, 1980).

P. Bruscaglioni and G. Zaccanti, “Multiple scattering in dense media,” in Scattering in Volumes and Surfaces, M.Nieto-Vesperinas and J.C.Dainty, eds. (Elsevier, 1990), pp. 53-71.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

C. Rozé, T. Girasole, G. Gréhan, L. Méès, L. Hespel, and A. Delfour, “Time-resolved propagation of femtosecond pulses in a dense scattering medium: Monte Carlo direct method,” in Proceedings of the Seventh International Congress on Optical Particle Characterization, Kyoto, Japan, August 1-5, 2004.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Detection in semi-Monte Carlo method. The photon is successively scattered by particles (1) and (2). At each collision a contribution to the detector is calculated.

Fig. 2
Fig. 2

Configuration under study.

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

Pulse correlations in the BBO crystal.

Fig. 5
Fig. 5

Transmitted light I I 0 versus time for decreasing polystyrene particle concentration from C 0 to C 6 . The cell length is L = 5 mm .

Fig. 6
Fig. 6

Volume concentration measurements from ballistic peak intensities versus volume concentrations estimated from dilution processes.

Fig. 7
Fig. 7

Polystyrene particles: Comparison between experiment and semi-Monte Carlo simulations for L = 5 mm cells. The optical depth Z (a) 17.72, (b) 20.09, (c) 20.88, (d) 21.8 are measured from the maximum of the experimental ballistic peak. The particle diameter is d = 1 μ m , the complex index of refraction is 1.58 i 0.001 . Half-angle of collection θ M = 0.024 ° corresponds to the best fit value.

Fig. 8
Fig. 8

Polystyrene particles: Case of a L = 1 mm cell and optical depth Z = 18.5 .

Fig. 9
Fig. 9

Glass particles: Comparison between experiment and semi-Monte Carlo simulations for L = 5 mm cells. The optical depths Z (a) 17.15, (b) 17.98, (c) 19.18, (d) 20.77 are measured from the maximum of the experimental ballistic peak. The particle diameter is d = 1.8 μ m , the complex refractive index is 1.49 i 10 5 and the detection-half angle is θ M = 0.024 ° .

Fig. 10
Fig. 10

Glass particles: Comparison between experiment and computation for L = 10 mm cell.

Fig. 11
Fig. 11

Transmitted light (in log scale) versus time with optical depth Z as a parameter. Other parameters are L = 5 mm , d = 1 μ m , n = 1.58 i 10 3 , θ M = 0.024 ° , and τ p = 100 fs .

Fig. 12
Fig. 12

Transmitted light versus time with half-angle of collection θ M as a parameter. Other parameters are those of the reference case.

Fig. 13
Fig. 13

Transmitted light versus time in log scale (a) and in linear scale (b) with the particle size as a parameter and a constant optical depth. Other parameters are those of the reference case.

Fig. 14
Fig. 14

Transmitted light versus time with L, the length of the cell, as a parameter and a constant optical depth. Other parameters are those of the reference case.

Fig. 15
Fig. 15

Transmitted light versus time with the real part of the refractive index m r as a parameter (the imaginary part is constant at 10 3 ). Other parameters are those of the reference case.

Fig. 16
Fig. 16

Transmitted light versus time with the imaginary part of the refractive index m i as a parameter (the real part is constant at 1.58). Other parameters are those of the reference case.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δ φ = f ( Ω i Ω d ) exp [ x i x d k e x t ( x ) d x ] δ Ω d ,
f ( θ , φ ) = 1 2 sin θ [ I x ( cos 2 φ S 2 2 ÷ sin 2 φ S 1 2 ) ÷ I y ( sin 2 φ S 2 2 ÷ cos 2 φ S 1 2 ) ] ÷ U sin θ sin φ cos φ ( S 2 2 S 1 2 ) ,
F ( θ ) = 0 θ 0 2 π f ( θ , φ ) sin θ d θ d φ 0 π 0 2 π f ( θ , φ ) sin θ d θ d φ = 0 θ sin θ ( S 1 2 + S 2 2 ) d θ 0 π sin θ ( S 1 2 + S 2 2 ) d θ ,
F ( φ θ ) = φ 2 π + 1 2 π ( sin 2 φ 2 Q cos 2 φ 2 U ) S 2 2 S 1 2 S 2 2 + S 1 2 ,
Δ θ 1 f δ ω 0 .
Z = ln ( I I 0 ) .
Z = N C e x t L ,
C e x t = C e x t ( d , n r , λ ) = 2 π λ p n = 1 ( 2 n + 1 ) Re ( a n + b n )

Metrics