Abstract

A robust parallelized halftoning method is proposed that is insensitive to dot loss, which can be a problem with xerographic and high-resolution printing. The method uses standard clustered-dot dither for smooth image blocks but uses the rankings of dither thresholds to halftone image blocks with high spatial activity. Experiments compare the ranked dither to dither, error diffusion, and green-noise error diffusion for four-color printing using standard clustered-dot dither masks at standard angles for the cyan, magenta, yellow, and black planes, respectively.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. N. Pappas and D. L. Neuhoff, “Least-squares model-based halftoning,” IEEE Trans. Image Process. 8, 1102-1116 (1999).
    [CrossRef]
  2. A. Zakhor, S. Lin, and F. Eskafi, “A new class of b/w halftoning algorithms,” IEEE Trans. Image Process. 2, 499-509 (1993).
    [CrossRef] [PubMed]
  3. J. B. Mulligan and A. J. Ahumada, “Principled halftoning based on models of human vision,” Proc. SPIE 1666, 109-121 (1992).
    [CrossRef]
  4. M. Analoui and J. P. Allebach, “Model-based halftoning using direct binary search,” Proc. SPIE 1666, 96-108 (1992).
    [CrossRef]
  5. A. U. Agar and J. P. Allebach, “Model-based color halftoning using direct binary search,” IEEE Trans. Image Process. 14, 1945-1959 (2005).
    [CrossRef] [PubMed]
  6. H. R. Kang, Digital Color Halftoning (SPIE Press, 1999).
  7. F. A. Baqai, J. Lee, A. U. Agar, and J. P. Allebach, “Digital color halftoning,” IEEE Signal Process. Mag. 22, 87-96 (2005).
    [CrossRef]
  8. M. R. Gupta and J. J. Bowen, “Ranked dither for robust color printing,” Proc. SPIE 6493, 649319 (2007), doi:10.1117/12699400.
    [CrossRef]
  9. V. Ostromoukhov and S. Nehab, “Halftoning with gradient-based selection of dither matrices,” U.S. patent 5,701,366 (1997).
  10. H. Z. Hel-Or, X. M. Zhang, and B. A. Wandell, “Adaptive cluster dot dithering,” J. Electron. Imaging 2, 133-144 (1999).
    [CrossRef]
  11. K. Kritayakirana, D. Tretter, and Q. Lin, Adaptive halftoning method and apparatus, U.S. patent 6,760,126 (2004).
  12. S. Daly and X. Feng, “Methods and systems for adaptive dither structures,” U.S. patent 5,017,4360 (2004).
  13. B. Oztan and G. Sharma, “Self modulated halftones,” in Proceedings of the IEEE International Conference on Signal Processing (IEEE, 2006), pp. 1533-1536.
  14. Q. Lin, “Adaptive halftoning based on image content,” U.S. patent 5,970,178 (1999).
  15. M. Gupta and H. Takahashi, “Replacement halftoning,” U.S. patent 6,851,783 (2005).
  16. R. Levien, “Output dependent feedback in error diffusion halftoning,” in Proceedings of the Society for Imaging Science and Technology 46th Annual Conference (IS&T, 1993), pp. 115-118.
  17. D. L. Lau, G. R. Arce, and N. C. Gallagher, “Green-noise digital halftoning,” Proc. IEEE 86, 2424-2444 (1998).
    [CrossRef]
  18. D. L. Lau, G. R. Arce, and N. C. Gallagher, “Digital color halftoning with generalized error diffusion and multichannel green-noise masks,” IEEE Trans. Image Process. 9, 923-935 (2000).
    [CrossRef]
  19. P. Li and J. P. Allebach, “Clustered-minority-pixel error diffusion,” J. Opt. Soc. Am. A 21, 1148-1160 (2004).
    [CrossRef]
  20. R. Eschbach, “Pixel-based error-diffusion algorithm for producing clustered halftone dots,” J. Electron. Imaging 3, 198-202 (1994).
    [CrossRef]
  21. R. Eschbach, “High addressability error diffusion with minimum mark size,” U.S. patent 5,374,997 (December 20, 1994).
  22. P. G. Roetling, “Halftone method with edge enhancement and moire suppression,” J. Opt. Soc. Am. 66, 985-989 (1976).
    [CrossRef]
  23. M. Gupta, M. Gormish, and D. Stork, “Block color quantization: a new method for color halftoning,” in Proceedings of the IEEE International Conference on Signal Processing (IEEE, 2000), Vol. 3, pp. 460-463.
  24. M. R. Gupta, M. Gormish, K. Berkner, and D. G. Stork, “Block quantization method for color halftoning,” U.S. patent 7,164,499 (January 16, 2007).
  25. S. Wang, “Uniform rosette for moire-free color halftoning,” Proc. SPIE 6493, 64931E (2007), doi:10.1117/12.705228.
    [CrossRef]

2007

M. R. Gupta and J. J. Bowen, “Ranked dither for robust color printing,” Proc. SPIE 6493, 649319 (2007), doi:10.1117/12699400.
[CrossRef]

S. Wang, “Uniform rosette for moire-free color halftoning,” Proc. SPIE 6493, 64931E (2007), doi:10.1117/12.705228.
[CrossRef]

2005

A. U. Agar and J. P. Allebach, “Model-based color halftoning using direct binary search,” IEEE Trans. Image Process. 14, 1945-1959 (2005).
[CrossRef] [PubMed]

F. A. Baqai, J. Lee, A. U. Agar, and J. P. Allebach, “Digital color halftoning,” IEEE Signal Process. Mag. 22, 87-96 (2005).
[CrossRef]

2004

2000

D. L. Lau, G. R. Arce, and N. C. Gallagher, “Digital color halftoning with generalized error diffusion and multichannel green-noise masks,” IEEE Trans. Image Process. 9, 923-935 (2000).
[CrossRef]

1999

H. Z. Hel-Or, X. M. Zhang, and B. A. Wandell, “Adaptive cluster dot dithering,” J. Electron. Imaging 2, 133-144 (1999).
[CrossRef]

T. N. Pappas and D. L. Neuhoff, “Least-squares model-based halftoning,” IEEE Trans. Image Process. 8, 1102-1116 (1999).
[CrossRef]

1998

D. L. Lau, G. R. Arce, and N. C. Gallagher, “Green-noise digital halftoning,” Proc. IEEE 86, 2424-2444 (1998).
[CrossRef]

1994

R. Eschbach, “Pixel-based error-diffusion algorithm for producing clustered halftone dots,” J. Electron. Imaging 3, 198-202 (1994).
[CrossRef]

1993

A. Zakhor, S. Lin, and F. Eskafi, “A new class of b/w halftoning algorithms,” IEEE Trans. Image Process. 2, 499-509 (1993).
[CrossRef] [PubMed]

1992

J. B. Mulligan and A. J. Ahumada, “Principled halftoning based on models of human vision,” Proc. SPIE 1666, 109-121 (1992).
[CrossRef]

M. Analoui and J. P. Allebach, “Model-based halftoning using direct binary search,” Proc. SPIE 1666, 96-108 (1992).
[CrossRef]

1976

Agar, A. U.

F. A. Baqai, J. Lee, A. U. Agar, and J. P. Allebach, “Digital color halftoning,” IEEE Signal Process. Mag. 22, 87-96 (2005).
[CrossRef]

A. U. Agar and J. P. Allebach, “Model-based color halftoning using direct binary search,” IEEE Trans. Image Process. 14, 1945-1959 (2005).
[CrossRef] [PubMed]

Ahumada, A. J.

J. B. Mulligan and A. J. Ahumada, “Principled halftoning based on models of human vision,” Proc. SPIE 1666, 109-121 (1992).
[CrossRef]

Allebach, J. P.

F. A. Baqai, J. Lee, A. U. Agar, and J. P. Allebach, “Digital color halftoning,” IEEE Signal Process. Mag. 22, 87-96 (2005).
[CrossRef]

A. U. Agar and J. P. Allebach, “Model-based color halftoning using direct binary search,” IEEE Trans. Image Process. 14, 1945-1959 (2005).
[CrossRef] [PubMed]

P. Li and J. P. Allebach, “Clustered-minority-pixel error diffusion,” J. Opt. Soc. Am. A 21, 1148-1160 (2004).
[CrossRef]

M. Analoui and J. P. Allebach, “Model-based halftoning using direct binary search,” Proc. SPIE 1666, 96-108 (1992).
[CrossRef]

Analoui, M.

M. Analoui and J. P. Allebach, “Model-based halftoning using direct binary search,” Proc. SPIE 1666, 96-108 (1992).
[CrossRef]

Arce, G. R.

D. L. Lau, G. R. Arce, and N. C. Gallagher, “Digital color halftoning with generalized error diffusion and multichannel green-noise masks,” IEEE Trans. Image Process. 9, 923-935 (2000).
[CrossRef]

D. L. Lau, G. R. Arce, and N. C. Gallagher, “Green-noise digital halftoning,” Proc. IEEE 86, 2424-2444 (1998).
[CrossRef]

Baqai, F. A.

F. A. Baqai, J. Lee, A. U. Agar, and J. P. Allebach, “Digital color halftoning,” IEEE Signal Process. Mag. 22, 87-96 (2005).
[CrossRef]

Berkner, K.

M. R. Gupta, M. Gormish, K. Berkner, and D. G. Stork, “Block quantization method for color halftoning,” U.S. patent 7,164,499 (January 16, 2007).

Bowen, J. J.

M. R. Gupta and J. J. Bowen, “Ranked dither for robust color printing,” Proc. SPIE 6493, 649319 (2007), doi:10.1117/12699400.
[CrossRef]

Daly, S.

S. Daly and X. Feng, “Methods and systems for adaptive dither structures,” U.S. patent 5,017,4360 (2004).

Eschbach, R.

R. Eschbach, “Pixel-based error-diffusion algorithm for producing clustered halftone dots,” J. Electron. Imaging 3, 198-202 (1994).
[CrossRef]

R. Eschbach, “High addressability error diffusion with minimum mark size,” U.S. patent 5,374,997 (December 20, 1994).

Eskafi, F.

A. Zakhor, S. Lin, and F. Eskafi, “A new class of b/w halftoning algorithms,” IEEE Trans. Image Process. 2, 499-509 (1993).
[CrossRef] [PubMed]

Feng, X.

S. Daly and X. Feng, “Methods and systems for adaptive dither structures,” U.S. patent 5,017,4360 (2004).

Gallagher, N. C.

D. L. Lau, G. R. Arce, and N. C. Gallagher, “Digital color halftoning with generalized error diffusion and multichannel green-noise masks,” IEEE Trans. Image Process. 9, 923-935 (2000).
[CrossRef]

D. L. Lau, G. R. Arce, and N. C. Gallagher, “Green-noise digital halftoning,” Proc. IEEE 86, 2424-2444 (1998).
[CrossRef]

Gormish, M.

M. R. Gupta, M. Gormish, K. Berkner, and D. G. Stork, “Block quantization method for color halftoning,” U.S. patent 7,164,499 (January 16, 2007).

M. Gupta, M. Gormish, and D. Stork, “Block color quantization: a new method for color halftoning,” in Proceedings of the IEEE International Conference on Signal Processing (IEEE, 2000), Vol. 3, pp. 460-463.

Gupta, M.

M. Gupta, M. Gormish, and D. Stork, “Block color quantization: a new method for color halftoning,” in Proceedings of the IEEE International Conference on Signal Processing (IEEE, 2000), Vol. 3, pp. 460-463.

M. Gupta and H. Takahashi, “Replacement halftoning,” U.S. patent 6,851,783 (2005).

Gupta, M. R.

M. R. Gupta and J. J. Bowen, “Ranked dither for robust color printing,” Proc. SPIE 6493, 649319 (2007), doi:10.1117/12699400.
[CrossRef]

M. R. Gupta, M. Gormish, K. Berkner, and D. G. Stork, “Block quantization method for color halftoning,” U.S. patent 7,164,499 (January 16, 2007).

Hel-Or, H. Z.

H. Z. Hel-Or, X. M. Zhang, and B. A. Wandell, “Adaptive cluster dot dithering,” J. Electron. Imaging 2, 133-144 (1999).
[CrossRef]

Kang, H. R.

H. R. Kang, Digital Color Halftoning (SPIE Press, 1999).

Kritayakirana, K.

K. Kritayakirana, D. Tretter, and Q. Lin, Adaptive halftoning method and apparatus, U.S. patent 6,760,126 (2004).

Lau, D. L.

D. L. Lau, G. R. Arce, and N. C. Gallagher, “Digital color halftoning with generalized error diffusion and multichannel green-noise masks,” IEEE Trans. Image Process. 9, 923-935 (2000).
[CrossRef]

D. L. Lau, G. R. Arce, and N. C. Gallagher, “Green-noise digital halftoning,” Proc. IEEE 86, 2424-2444 (1998).
[CrossRef]

Lee, J.

F. A. Baqai, J. Lee, A. U. Agar, and J. P. Allebach, “Digital color halftoning,” IEEE Signal Process. Mag. 22, 87-96 (2005).
[CrossRef]

Levien, R.

R. Levien, “Output dependent feedback in error diffusion halftoning,” in Proceedings of the Society for Imaging Science and Technology 46th Annual Conference (IS&T, 1993), pp. 115-118.

Li, P.

Lin, Q.

Q. Lin, “Adaptive halftoning based on image content,” U.S. patent 5,970,178 (1999).

K. Kritayakirana, D. Tretter, and Q. Lin, Adaptive halftoning method and apparatus, U.S. patent 6,760,126 (2004).

Lin, S.

A. Zakhor, S. Lin, and F. Eskafi, “A new class of b/w halftoning algorithms,” IEEE Trans. Image Process. 2, 499-509 (1993).
[CrossRef] [PubMed]

Mulligan, J. B.

J. B. Mulligan and A. J. Ahumada, “Principled halftoning based on models of human vision,” Proc. SPIE 1666, 109-121 (1992).
[CrossRef]

Nehab, S.

V. Ostromoukhov and S. Nehab, “Halftoning with gradient-based selection of dither matrices,” U.S. patent 5,701,366 (1997).

Neuhoff, D. L.

T. N. Pappas and D. L. Neuhoff, “Least-squares model-based halftoning,” IEEE Trans. Image Process. 8, 1102-1116 (1999).
[CrossRef]

Ostromoukhov, V.

V. Ostromoukhov and S. Nehab, “Halftoning with gradient-based selection of dither matrices,” U.S. patent 5,701,366 (1997).

Oztan, B.

B. Oztan and G. Sharma, “Self modulated halftones,” in Proceedings of the IEEE International Conference on Signal Processing (IEEE, 2006), pp. 1533-1536.

Pappas, T. N.

T. N. Pappas and D. L. Neuhoff, “Least-squares model-based halftoning,” IEEE Trans. Image Process. 8, 1102-1116 (1999).
[CrossRef]

Roetling, P. G.

Sharma, G.

B. Oztan and G. Sharma, “Self modulated halftones,” in Proceedings of the IEEE International Conference on Signal Processing (IEEE, 2006), pp. 1533-1536.

Stork, D.

M. Gupta, M. Gormish, and D. Stork, “Block color quantization: a new method for color halftoning,” in Proceedings of the IEEE International Conference on Signal Processing (IEEE, 2000), Vol. 3, pp. 460-463.

Stork, D. G.

M. R. Gupta, M. Gormish, K. Berkner, and D. G. Stork, “Block quantization method for color halftoning,” U.S. patent 7,164,499 (January 16, 2007).

Takahashi, H.

M. Gupta and H. Takahashi, “Replacement halftoning,” U.S. patent 6,851,783 (2005).

Tretter, D.

K. Kritayakirana, D. Tretter, and Q. Lin, Adaptive halftoning method and apparatus, U.S. patent 6,760,126 (2004).

Wandell, B. A.

H. Z. Hel-Or, X. M. Zhang, and B. A. Wandell, “Adaptive cluster dot dithering,” J. Electron. Imaging 2, 133-144 (1999).
[CrossRef]

Wang, S.

S. Wang, “Uniform rosette for moire-free color halftoning,” Proc. SPIE 6493, 64931E (2007), doi:10.1117/12.705228.
[CrossRef]

Zakhor, A.

A. Zakhor, S. Lin, and F. Eskafi, “A new class of b/w halftoning algorithms,” IEEE Trans. Image Process. 2, 499-509 (1993).
[CrossRef] [PubMed]

Zhang, X. M.

H. Z. Hel-Or, X. M. Zhang, and B. A. Wandell, “Adaptive cluster dot dithering,” J. Electron. Imaging 2, 133-144 (1999).
[CrossRef]

IEEE Signal Process. Mag.

F. A. Baqai, J. Lee, A. U. Agar, and J. P. Allebach, “Digital color halftoning,” IEEE Signal Process. Mag. 22, 87-96 (2005).
[CrossRef]

IEEE Trans. Image Process.

A. U. Agar and J. P. Allebach, “Model-based color halftoning using direct binary search,” IEEE Trans. Image Process. 14, 1945-1959 (2005).
[CrossRef] [PubMed]

T. N. Pappas and D. L. Neuhoff, “Least-squares model-based halftoning,” IEEE Trans. Image Process. 8, 1102-1116 (1999).
[CrossRef]

A. Zakhor, S. Lin, and F. Eskafi, “A new class of b/w halftoning algorithms,” IEEE Trans. Image Process. 2, 499-509 (1993).
[CrossRef] [PubMed]

D. L. Lau, G. R. Arce, and N. C. Gallagher, “Digital color halftoning with generalized error diffusion and multichannel green-noise masks,” IEEE Trans. Image Process. 9, 923-935 (2000).
[CrossRef]

J. Electron. Imaging

R. Eschbach, “Pixel-based error-diffusion algorithm for producing clustered halftone dots,” J. Electron. Imaging 3, 198-202 (1994).
[CrossRef]

H. Z. Hel-Or, X. M. Zhang, and B. A. Wandell, “Adaptive cluster dot dithering,” J. Electron. Imaging 2, 133-144 (1999).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Proc. IEEE

D. L. Lau, G. R. Arce, and N. C. Gallagher, “Green-noise digital halftoning,” Proc. IEEE 86, 2424-2444 (1998).
[CrossRef]

Proc. SPIE

S. Wang, “Uniform rosette for moire-free color halftoning,” Proc. SPIE 6493, 64931E (2007), doi:10.1117/12.705228.
[CrossRef]

J. B. Mulligan and A. J. Ahumada, “Principled halftoning based on models of human vision,” Proc. SPIE 1666, 109-121 (1992).
[CrossRef]

M. Analoui and J. P. Allebach, “Model-based halftoning using direct binary search,” Proc. SPIE 1666, 96-108 (1992).
[CrossRef]

M. R. Gupta and J. J. Bowen, “Ranked dither for robust color printing,” Proc. SPIE 6493, 649319 (2007), doi:10.1117/12699400.
[CrossRef]

Other

V. Ostromoukhov and S. Nehab, “Halftoning with gradient-based selection of dither matrices,” U.S. patent 5,701,366 (1997).

H. R. Kang, Digital Color Halftoning (SPIE Press, 1999).

K. Kritayakirana, D. Tretter, and Q. Lin, Adaptive halftoning method and apparatus, U.S. patent 6,760,126 (2004).

S. Daly and X. Feng, “Methods and systems for adaptive dither structures,” U.S. patent 5,017,4360 (2004).

B. Oztan and G. Sharma, “Self modulated halftones,” in Proceedings of the IEEE International Conference on Signal Processing (IEEE, 2006), pp. 1533-1536.

Q. Lin, “Adaptive halftoning based on image content,” U.S. patent 5,970,178 (1999).

M. Gupta and H. Takahashi, “Replacement halftoning,” U.S. patent 6,851,783 (2005).

R. Levien, “Output dependent feedback in error diffusion halftoning,” in Proceedings of the Society for Imaging Science and Technology 46th Annual Conference (IS&T, 1993), pp. 115-118.

R. Eschbach, “High addressability error diffusion with minimum mark size,” U.S. patent 5,374,997 (December 20, 1994).

M. Gupta, M. Gormish, and D. Stork, “Block color quantization: a new method for color halftoning,” in Proceedings of the IEEE International Conference on Signal Processing (IEEE, 2000), Vol. 3, pp. 460-463.

M. R. Gupta, M. Gormish, K. Berkner, and D. G. Stork, “Block quantization method for color halftoning,” U.S. patent 7,164,499 (January 16, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Effect of loss of isolated dots on an error diffusion halftone shown at 75 dpi.

Fig. 2
Fig. 2

Example pixel values, dither thresholds, and resulting halftones.

Fig. 3
Fig. 3

Comparison of robust halftoning methods shown at 75 dpi.

Fig. 4
Fig. 4

Comparison of robust halftoning methods shown at 75 dpi.

Fig. 5
Fig. 5

Comparison of halftoning methods on a zone plate image shown at 75 dpi.

Tables (1)

Tables Icon

Table 1 Number of Isolated Dots for PhotoDisc PDI Target

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

max m , n = 1 , 2 , , M b m b n > t

Metrics