Abstract

Recent physiological studies revealed that neurons in the macaque visual cortex encode the direction of a figure along a contour (border ownership, BO). Although their cortical mechanisms have not been clarified, a computational model for BO has suggested that surround modulation in early vision can play an important role. Here we examined psychophysically how the strength of BO-dependent tilt aftereffect (BO-TAE) is modulated by a stimulus outside the adapted location in relation to the strength of surround modulation reported in physiological experiments. The results showed systematic change of the strength of BO-TAE, depending on the difference in orientation and spatial frequency between the bars placed outside and at the adapted location, indicating a crucial role of surround modulation in the neural mechanism underlying BO selectivity.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Felleman and D. C. Van Essen, “Distributed hierarchial processing in primate cerebral cortex,” Cereb. Cortex 1, 1-47 (1991).
    [CrossRef] [PubMed]
  2. R. Gattass, C. G. Gross, and J. H. Sandell, “Visual topography of V2 in the macaque,” J. Comp. Neurol. 201, 519-539 (1981).
    [CrossRef] [PubMed]
  3. G. Baumgartner, R. von der Heydt, and E. Peterhans, “Anomalous contours: A tool in studying the neurophysiology of vision,” Exp. Brain Res. Suppl. 9, 413-419 (1984).
    [CrossRef]
  4. R. von der Heydt, E. Peterhans, and G. Baumgartner, “Illusory contours and cortical neuron responses,” Science 224, 1260-1262 (1984).
    [CrossRef] [PubMed]
  5. H. Zhou, H. S. Friedman, and R. von der Heydt, “Coding of border ownership in monkey visual cortex,” J. Neurosci. 20, 6594-6611 (2000).
    [PubMed]
  6. F. Qiu, T. Sugihara, and R. von der Heydt, “Figure-ground mechanisms provide structure for selective attention,” Nat. Neurosci. 10, 1492-1499 (2007).
    [CrossRef] [PubMed]
  7. V. A. Lamme, “The neurophysiology of figure-ground segregation in primary visual cortex,” J. Neurosci. 15, 1605-1615 (1995).
    [PubMed]
  8. A. M. Sillito, K. L. Grieve, H. E. Jones, J. Cudeiro, and J. Davis, “Visual cortical mechanisms detecting focal orientation discontinuities,” Nature 378, 492-496 (1995).
    [CrossRef] [PubMed]
  9. K. Zipser, A. F. Lamme, and P. H. Schiller, “Contextual modulation in primary visual cortex,” J. Neurosci. 16, 7376-7389 (1996).
    [PubMed]
  10. H. E. Jones, W. Wang, and A. M. Sillito, “Spatial organization and magnitude of orientation contrast interactions in primate V1,” J. Neurophysiol. 88, 2796-2808 (2002).
    [CrossRef] [PubMed]
  11. K. Sakai and H. Nishimura, “Surrounding suppression and facilitation in the determination of border ownership,” J. Cogn Neurosci. 18, 562-579 (2006).
    [CrossRef] [PubMed]
  12. R. von der Heydt, T. Macuda, and F. T. Qiu, “Border-ownership-dependent tilt aftereffect,” J. Opt. Soc. Am. A 22, 2222-2229 (2005).
    [CrossRef]
  13. T. Sugihara, Y. Tsuji, and K. Sakai, “Border-ownership-dependent tilt aftereffect in incomplete figures,” J. Opt. Soc. Am. A 24, 18-24 (2007).
    [CrossRef]
  14. H. Nishimura and K. Sakai, “Determination of border-ownership based on the surround context of contrast,” Neurocomputing 58-60, 843-848 (2004).
    [CrossRef]
  15. M. Ito and H. Komatsu, “Representation of angles embedded within contour stimuli in area V2 of macaque monkeys,” J. Neurosci. 24, 3313-3324 (2004).
    [CrossRef] [PubMed]
  16. C. W. Clifford, P. Wenderoth, and B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. London, Ser. B 267, 1705-1710 (2000).
    [CrossRef]
  17. M. Coltheart, “Visual feature-analyzers and the after effects of tilt and curvature,” Psychol. Rev. 78, 114-121 (1971).
    [CrossRef] [PubMed]
  18. M. J. Wainwright, “Visual adaptation as optimal information transmission,” Vision Res. 39, 3960-3974 (1999).
    [CrossRef]
  19. C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237-260 (1969).
  20. B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, “Early and late mechanisms of surround suppression in striate cortex of macaque,” J. Neurosci. 25, 11666-11675 (2005).
    [CrossRef] [PubMed]
  21. D. G. Albrecht, S. B. Farrar, and D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex,” J. Physiol. (London) 347, 713-739 (1984).
  22. V. Dragoi, J. Sharma, and M. Sur, “Adaptation-induced plasticity of orientation tuning in adult visual cortex,” Neuron 28, 287-298 (2000).
    [CrossRef] [PubMed]
  23. D. Giaschi, R. Douglas, S. Marlin, and M. Cynader, “The time course of direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 70, 2024-2034 (1993).
    [PubMed]
  24. S. G. Marlin, S. J. Hasan, and M. S. Cynader, “Direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 59, 1314-1330 (1988).
    [PubMed]
  25. J. R. Müller, A. B. Metha, J. Krauskopf, and P. Lennie, “Rapid adaptation in visual cortex to the structure of images,” Science 285, 1405-1408 (1999).
    [CrossRef] [PubMed]
  26. R. G. Vautin and M. A. Berkley, “Responses of single cells in cat visual cortex to prolonged stimulus movement: Neural correlates of visual aftereffects,” J. Neurophysiol. 40, 1051-1065 (1977).
    [PubMed]
  27. Y. Tsuji and K. Sakai, “Orientation dependency in border-ownership dependent tilt aftereffect,” J. Vis. Soc. Jpn. Suppl. 18, 143 (2006).

2007 (2)

F. Qiu, T. Sugihara, and R. von der Heydt, “Figure-ground mechanisms provide structure for selective attention,” Nat. Neurosci. 10, 1492-1499 (2007).
[CrossRef] [PubMed]

T. Sugihara, Y. Tsuji, and K. Sakai, “Border-ownership-dependent tilt aftereffect in incomplete figures,” J. Opt. Soc. Am. A 24, 18-24 (2007).
[CrossRef]

2006 (2)

K. Sakai and H. Nishimura, “Surrounding suppression and facilitation in the determination of border ownership,” J. Cogn Neurosci. 18, 562-579 (2006).
[CrossRef] [PubMed]

Y. Tsuji and K. Sakai, “Orientation dependency in border-ownership dependent tilt aftereffect,” J. Vis. Soc. Jpn. Suppl. 18, 143 (2006).

2005 (2)

B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, “Early and late mechanisms of surround suppression in striate cortex of macaque,” J. Neurosci. 25, 11666-11675 (2005).
[CrossRef] [PubMed]

R. von der Heydt, T. Macuda, and F. T. Qiu, “Border-ownership-dependent tilt aftereffect,” J. Opt. Soc. Am. A 22, 2222-2229 (2005).
[CrossRef]

2004 (2)

H. Nishimura and K. Sakai, “Determination of border-ownership based on the surround context of contrast,” Neurocomputing 58-60, 843-848 (2004).
[CrossRef]

M. Ito and H. Komatsu, “Representation of angles embedded within contour stimuli in area V2 of macaque monkeys,” J. Neurosci. 24, 3313-3324 (2004).
[CrossRef] [PubMed]

2002 (1)

H. E. Jones, W. Wang, and A. M. Sillito, “Spatial organization and magnitude of orientation contrast interactions in primate V1,” J. Neurophysiol. 88, 2796-2808 (2002).
[CrossRef] [PubMed]

2000 (3)

V. Dragoi, J. Sharma, and M. Sur, “Adaptation-induced plasticity of orientation tuning in adult visual cortex,” Neuron 28, 287-298 (2000).
[CrossRef] [PubMed]

C. W. Clifford, P. Wenderoth, and B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. London, Ser. B 267, 1705-1710 (2000).
[CrossRef]

H. Zhou, H. S. Friedman, and R. von der Heydt, “Coding of border ownership in monkey visual cortex,” J. Neurosci. 20, 6594-6611 (2000).
[PubMed]

1999 (2)

M. J. Wainwright, “Visual adaptation as optimal information transmission,” Vision Res. 39, 3960-3974 (1999).
[CrossRef]

J. R. Müller, A. B. Metha, J. Krauskopf, and P. Lennie, “Rapid adaptation in visual cortex to the structure of images,” Science 285, 1405-1408 (1999).
[CrossRef] [PubMed]

1996 (1)

K. Zipser, A. F. Lamme, and P. H. Schiller, “Contextual modulation in primary visual cortex,” J. Neurosci. 16, 7376-7389 (1996).
[PubMed]

1995 (2)

V. A. Lamme, “The neurophysiology of figure-ground segregation in primary visual cortex,” J. Neurosci. 15, 1605-1615 (1995).
[PubMed]

A. M. Sillito, K. L. Grieve, H. E. Jones, J. Cudeiro, and J. Davis, “Visual cortical mechanisms detecting focal orientation discontinuities,” Nature 378, 492-496 (1995).
[CrossRef] [PubMed]

1993 (1)

D. Giaschi, R. Douglas, S. Marlin, and M. Cynader, “The time course of direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 70, 2024-2034 (1993).
[PubMed]

1991 (1)

D. J. Felleman and D. C. Van Essen, “Distributed hierarchial processing in primate cerebral cortex,” Cereb. Cortex 1, 1-47 (1991).
[CrossRef] [PubMed]

1988 (1)

S. G. Marlin, S. J. Hasan, and M. S. Cynader, “Direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 59, 1314-1330 (1988).
[PubMed]

1984 (3)

D. G. Albrecht, S. B. Farrar, and D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex,” J. Physiol. (London) 347, 713-739 (1984).

G. Baumgartner, R. von der Heydt, and E. Peterhans, “Anomalous contours: A tool in studying the neurophysiology of vision,” Exp. Brain Res. Suppl. 9, 413-419 (1984).
[CrossRef]

R. von der Heydt, E. Peterhans, and G. Baumgartner, “Illusory contours and cortical neuron responses,” Science 224, 1260-1262 (1984).
[CrossRef] [PubMed]

1981 (1)

R. Gattass, C. G. Gross, and J. H. Sandell, “Visual topography of V2 in the macaque,” J. Comp. Neurol. 201, 519-539 (1981).
[CrossRef] [PubMed]

1977 (1)

R. G. Vautin and M. A. Berkley, “Responses of single cells in cat visual cortex to prolonged stimulus movement: Neural correlates of visual aftereffects,” J. Neurophysiol. 40, 1051-1065 (1977).
[PubMed]

1971 (1)

M. Coltheart, “Visual feature-analyzers and the after effects of tilt and curvature,” Psychol. Rev. 78, 114-121 (1971).
[CrossRef] [PubMed]

1969 (1)

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237-260 (1969).

Albrecht, D. G.

D. G. Albrecht, S. B. Farrar, and D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex,” J. Physiol. (London) 347, 713-739 (1984).

Baumgartner, G.

G. Baumgartner, R. von der Heydt, and E. Peterhans, “Anomalous contours: A tool in studying the neurophysiology of vision,” Exp. Brain Res. Suppl. 9, 413-419 (1984).
[CrossRef]

R. von der Heydt, E. Peterhans, and G. Baumgartner, “Illusory contours and cortical neuron responses,” Science 224, 1260-1262 (1984).
[CrossRef] [PubMed]

Berkley, M. A.

R. G. Vautin and M. A. Berkley, “Responses of single cells in cat visual cortex to prolonged stimulus movement: Neural correlates of visual aftereffects,” J. Neurophysiol. 40, 1051-1065 (1977).
[PubMed]

Blakemore, C.

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237-260 (1969).

Campbell, F. W.

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237-260 (1969).

Clifford, C. W.

C. W. Clifford, P. Wenderoth, and B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. London, Ser. B 267, 1705-1710 (2000).
[CrossRef]

Coltheart, M.

M. Coltheart, “Visual feature-analyzers and the after effects of tilt and curvature,” Psychol. Rev. 78, 114-121 (1971).
[CrossRef] [PubMed]

Cudeiro, J.

A. M. Sillito, K. L. Grieve, H. E. Jones, J. Cudeiro, and J. Davis, “Visual cortical mechanisms detecting focal orientation discontinuities,” Nature 378, 492-496 (1995).
[CrossRef] [PubMed]

Cynader, M.

D. Giaschi, R. Douglas, S. Marlin, and M. Cynader, “The time course of direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 70, 2024-2034 (1993).
[PubMed]

Cynader, M. S.

S. G. Marlin, S. J. Hasan, and M. S. Cynader, “Direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 59, 1314-1330 (1988).
[PubMed]

Davis, J.

A. M. Sillito, K. L. Grieve, H. E. Jones, J. Cudeiro, and J. Davis, “Visual cortical mechanisms detecting focal orientation discontinuities,” Nature 378, 492-496 (1995).
[CrossRef] [PubMed]

Dhruv, N. T.

B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, “Early and late mechanisms of surround suppression in striate cortex of macaque,” J. Neurosci. 25, 11666-11675 (2005).
[CrossRef] [PubMed]

Douglas, R.

D. Giaschi, R. Douglas, S. Marlin, and M. Cynader, “The time course of direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 70, 2024-2034 (1993).
[PubMed]

Dragoi, V.

V. Dragoi, J. Sharma, and M. Sur, “Adaptation-induced plasticity of orientation tuning in adult visual cortex,” Neuron 28, 287-298 (2000).
[CrossRef] [PubMed]

Farrar, S. B.

D. G. Albrecht, S. B. Farrar, and D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex,” J. Physiol. (London) 347, 713-739 (1984).

Felleman, D. J.

D. J. Felleman and D. C. Van Essen, “Distributed hierarchial processing in primate cerebral cortex,” Cereb. Cortex 1, 1-47 (1991).
[CrossRef] [PubMed]

Friedman, H. S.

H. Zhou, H. S. Friedman, and R. von der Heydt, “Coding of border ownership in monkey visual cortex,” J. Neurosci. 20, 6594-6611 (2000).
[PubMed]

Gattass, R.

R. Gattass, C. G. Gross, and J. H. Sandell, “Visual topography of V2 in the macaque,” J. Comp. Neurol. 201, 519-539 (1981).
[CrossRef] [PubMed]

Giaschi, D.

D. Giaschi, R. Douglas, S. Marlin, and M. Cynader, “The time course of direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 70, 2024-2034 (1993).
[PubMed]

Grieve, K. L.

A. M. Sillito, K. L. Grieve, H. E. Jones, J. Cudeiro, and J. Davis, “Visual cortical mechanisms detecting focal orientation discontinuities,” Nature 378, 492-496 (1995).
[CrossRef] [PubMed]

Gross, C. G.

R. Gattass, C. G. Gross, and J. H. Sandell, “Visual topography of V2 in the macaque,” J. Comp. Neurol. 201, 519-539 (1981).
[CrossRef] [PubMed]

Hamilton, D. B.

D. G. Albrecht, S. B. Farrar, and D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex,” J. Physiol. (London) 347, 713-739 (1984).

Hasan, S. J.

S. G. Marlin, S. J. Hasan, and M. S. Cynader, “Direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 59, 1314-1330 (1988).
[PubMed]

Ito, M.

M. Ito and H. Komatsu, “Representation of angles embedded within contour stimuli in area V2 of macaque monkeys,” J. Neurosci. 24, 3313-3324 (2004).
[CrossRef] [PubMed]

Jones, H. E.

H. E. Jones, W. Wang, and A. M. Sillito, “Spatial organization and magnitude of orientation contrast interactions in primate V1,” J. Neurophysiol. 88, 2796-2808 (2002).
[CrossRef] [PubMed]

A. M. Sillito, K. L. Grieve, H. E. Jones, J. Cudeiro, and J. Davis, “Visual cortical mechanisms detecting focal orientation discontinuities,” Nature 378, 492-496 (1995).
[CrossRef] [PubMed]

Komatsu, H.

M. Ito and H. Komatsu, “Representation of angles embedded within contour stimuli in area V2 of macaque monkeys,” J. Neurosci. 24, 3313-3324 (2004).
[CrossRef] [PubMed]

Krauskopf, J.

J. R. Müller, A. B. Metha, J. Krauskopf, and P. Lennie, “Rapid adaptation in visual cortex to the structure of images,” Science 285, 1405-1408 (1999).
[CrossRef] [PubMed]

Lamme, A. F.

K. Zipser, A. F. Lamme, and P. H. Schiller, “Contextual modulation in primary visual cortex,” J. Neurosci. 16, 7376-7389 (1996).
[PubMed]

Lamme, V. A.

V. A. Lamme, “The neurophysiology of figure-ground segregation in primary visual cortex,” J. Neurosci. 15, 1605-1615 (1995).
[PubMed]

Lennie, P.

B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, “Early and late mechanisms of surround suppression in striate cortex of macaque,” J. Neurosci. 25, 11666-11675 (2005).
[CrossRef] [PubMed]

J. R. Müller, A. B. Metha, J. Krauskopf, and P. Lennie, “Rapid adaptation in visual cortex to the structure of images,” Science 285, 1405-1408 (1999).
[CrossRef] [PubMed]

Macuda, T.

Marlin, S.

D. Giaschi, R. Douglas, S. Marlin, and M. Cynader, “The time course of direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 70, 2024-2034 (1993).
[PubMed]

Marlin, S. G.

S. G. Marlin, S. J. Hasan, and M. S. Cynader, “Direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 59, 1314-1330 (1988).
[PubMed]

Metha, A. B.

J. R. Müller, A. B. Metha, J. Krauskopf, and P. Lennie, “Rapid adaptation in visual cortex to the structure of images,” Science 285, 1405-1408 (1999).
[CrossRef] [PubMed]

Müller, J. R.

J. R. Müller, A. B. Metha, J. Krauskopf, and P. Lennie, “Rapid adaptation in visual cortex to the structure of images,” Science 285, 1405-1408 (1999).
[CrossRef] [PubMed]

Nishimura, H.

K. Sakai and H. Nishimura, “Surrounding suppression and facilitation in the determination of border ownership,” J. Cogn Neurosci. 18, 562-579 (2006).
[CrossRef] [PubMed]

H. Nishimura and K. Sakai, “Determination of border-ownership based on the surround context of contrast,” Neurocomputing 58-60, 843-848 (2004).
[CrossRef]

Peterhans, E.

R. von der Heydt, E. Peterhans, and G. Baumgartner, “Illusory contours and cortical neuron responses,” Science 224, 1260-1262 (1984).
[CrossRef] [PubMed]

G. Baumgartner, R. von der Heydt, and E. Peterhans, “Anomalous contours: A tool in studying the neurophysiology of vision,” Exp. Brain Res. Suppl. 9, 413-419 (1984).
[CrossRef]

Qiu, F.

F. Qiu, T. Sugihara, and R. von der Heydt, “Figure-ground mechanisms provide structure for selective attention,” Nat. Neurosci. 10, 1492-1499 (2007).
[CrossRef] [PubMed]

Qiu, F. T.

Sakai, K.

T. Sugihara, Y. Tsuji, and K. Sakai, “Border-ownership-dependent tilt aftereffect in incomplete figures,” J. Opt. Soc. Am. A 24, 18-24 (2007).
[CrossRef]

K. Sakai and H. Nishimura, “Surrounding suppression and facilitation in the determination of border ownership,” J. Cogn Neurosci. 18, 562-579 (2006).
[CrossRef] [PubMed]

Y. Tsuji and K. Sakai, “Orientation dependency in border-ownership dependent tilt aftereffect,” J. Vis. Soc. Jpn. Suppl. 18, 143 (2006).

H. Nishimura and K. Sakai, “Determination of border-ownership based on the surround context of contrast,” Neurocomputing 58-60, 843-848 (2004).
[CrossRef]

Sandell, J. H.

R. Gattass, C. G. Gross, and J. H. Sandell, “Visual topography of V2 in the macaque,” J. Comp. Neurol. 201, 519-539 (1981).
[CrossRef] [PubMed]

Schiller, P. H.

K. Zipser, A. F. Lamme, and P. H. Schiller, “Contextual modulation in primary visual cortex,” J. Neurosci. 16, 7376-7389 (1996).
[PubMed]

Sharma, J.

V. Dragoi, J. Sharma, and M. Sur, “Adaptation-induced plasticity of orientation tuning in adult visual cortex,” Neuron 28, 287-298 (2000).
[CrossRef] [PubMed]

Sillito, A. M.

H. E. Jones, W. Wang, and A. M. Sillito, “Spatial organization and magnitude of orientation contrast interactions in primate V1,” J. Neurophysiol. 88, 2796-2808 (2002).
[CrossRef] [PubMed]

A. M. Sillito, K. L. Grieve, H. E. Jones, J. Cudeiro, and J. Davis, “Visual cortical mechanisms detecting focal orientation discontinuities,” Nature 378, 492-496 (1995).
[CrossRef] [PubMed]

Solomon, S. G.

B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, “Early and late mechanisms of surround suppression in striate cortex of macaque,” J. Neurosci. 25, 11666-11675 (2005).
[CrossRef] [PubMed]

Spehar, B.

C. W. Clifford, P. Wenderoth, and B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. London, Ser. B 267, 1705-1710 (2000).
[CrossRef]

Sugihara, T.

F. Qiu, T. Sugihara, and R. von der Heydt, “Figure-ground mechanisms provide structure for selective attention,” Nat. Neurosci. 10, 1492-1499 (2007).
[CrossRef] [PubMed]

T. Sugihara, Y. Tsuji, and K. Sakai, “Border-ownership-dependent tilt aftereffect in incomplete figures,” J. Opt. Soc. Am. A 24, 18-24 (2007).
[CrossRef]

Sur, M.

V. Dragoi, J. Sharma, and M. Sur, “Adaptation-induced plasticity of orientation tuning in adult visual cortex,” Neuron 28, 287-298 (2000).
[CrossRef] [PubMed]

Tailby, C.

B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, “Early and late mechanisms of surround suppression in striate cortex of macaque,” J. Neurosci. 25, 11666-11675 (2005).
[CrossRef] [PubMed]

Tsuji, Y.

T. Sugihara, Y. Tsuji, and K. Sakai, “Border-ownership-dependent tilt aftereffect in incomplete figures,” J. Opt. Soc. Am. A 24, 18-24 (2007).
[CrossRef]

Y. Tsuji and K. Sakai, “Orientation dependency in border-ownership dependent tilt aftereffect,” J. Vis. Soc. Jpn. Suppl. 18, 143 (2006).

Van Essen, D. C.

D. J. Felleman and D. C. Van Essen, “Distributed hierarchial processing in primate cerebral cortex,” Cereb. Cortex 1, 1-47 (1991).
[CrossRef] [PubMed]

Vautin, R. G.

R. G. Vautin and M. A. Berkley, “Responses of single cells in cat visual cortex to prolonged stimulus movement: Neural correlates of visual aftereffects,” J. Neurophysiol. 40, 1051-1065 (1977).
[PubMed]

von der Heydt, R.

F. Qiu, T. Sugihara, and R. von der Heydt, “Figure-ground mechanisms provide structure for selective attention,” Nat. Neurosci. 10, 1492-1499 (2007).
[CrossRef] [PubMed]

R. von der Heydt, T. Macuda, and F. T. Qiu, “Border-ownership-dependent tilt aftereffect,” J. Opt. Soc. Am. A 22, 2222-2229 (2005).
[CrossRef]

H. Zhou, H. S. Friedman, and R. von der Heydt, “Coding of border ownership in monkey visual cortex,” J. Neurosci. 20, 6594-6611 (2000).
[PubMed]

R. von der Heydt, E. Peterhans, and G. Baumgartner, “Illusory contours and cortical neuron responses,” Science 224, 1260-1262 (1984).
[CrossRef] [PubMed]

G. Baumgartner, R. von der Heydt, and E. Peterhans, “Anomalous contours: A tool in studying the neurophysiology of vision,” Exp. Brain Res. Suppl. 9, 413-419 (1984).
[CrossRef]

Wainwright, M. J.

M. J. Wainwright, “Visual adaptation as optimal information transmission,” Vision Res. 39, 3960-3974 (1999).
[CrossRef]

Wang, W.

H. E. Jones, W. Wang, and A. M. Sillito, “Spatial organization and magnitude of orientation contrast interactions in primate V1,” J. Neurophysiol. 88, 2796-2808 (2002).
[CrossRef] [PubMed]

Webb, B. S.

B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, “Early and late mechanisms of surround suppression in striate cortex of macaque,” J. Neurosci. 25, 11666-11675 (2005).
[CrossRef] [PubMed]

Wenderoth, P.

C. W. Clifford, P. Wenderoth, and B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. London, Ser. B 267, 1705-1710 (2000).
[CrossRef]

Zhou, H.

H. Zhou, H. S. Friedman, and R. von der Heydt, “Coding of border ownership in monkey visual cortex,” J. Neurosci. 20, 6594-6611 (2000).
[PubMed]

Zipser, K.

K. Zipser, A. F. Lamme, and P. H. Schiller, “Contextual modulation in primary visual cortex,” J. Neurosci. 16, 7376-7389 (1996).
[PubMed]

Cereb. Cortex (1)

D. J. Felleman and D. C. Van Essen, “Distributed hierarchial processing in primate cerebral cortex,” Cereb. Cortex 1, 1-47 (1991).
[CrossRef] [PubMed]

Exp. Brain Res. (1)

G. Baumgartner, R. von der Heydt, and E. Peterhans, “Anomalous contours: A tool in studying the neurophysiology of vision,” Exp. Brain Res. Suppl. 9, 413-419 (1984).
[CrossRef]

J. Cogn Neurosci. (1)

K. Sakai and H. Nishimura, “Surrounding suppression and facilitation in the determination of border ownership,” J. Cogn Neurosci. 18, 562-579 (2006).
[CrossRef] [PubMed]

J. Comp. Neurol. (1)

R. Gattass, C. G. Gross, and J. H. Sandell, “Visual topography of V2 in the macaque,” J. Comp. Neurol. 201, 519-539 (1981).
[CrossRef] [PubMed]

J. Neurophysiol. (4)

H. E. Jones, W. Wang, and A. M. Sillito, “Spatial organization and magnitude of orientation contrast interactions in primate V1,” J. Neurophysiol. 88, 2796-2808 (2002).
[CrossRef] [PubMed]

D. Giaschi, R. Douglas, S. Marlin, and M. Cynader, “The time course of direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 70, 2024-2034 (1993).
[PubMed]

S. G. Marlin, S. J. Hasan, and M. S. Cynader, “Direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 59, 1314-1330 (1988).
[PubMed]

R. G. Vautin and M. A. Berkley, “Responses of single cells in cat visual cortex to prolonged stimulus movement: Neural correlates of visual aftereffects,” J. Neurophysiol. 40, 1051-1065 (1977).
[PubMed]

J. Neurosci. (5)

B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, “Early and late mechanisms of surround suppression in striate cortex of macaque,” J. Neurosci. 25, 11666-11675 (2005).
[CrossRef] [PubMed]

K. Zipser, A. F. Lamme, and P. H. Schiller, “Contextual modulation in primary visual cortex,” J. Neurosci. 16, 7376-7389 (1996).
[PubMed]

M. Ito and H. Komatsu, “Representation of angles embedded within contour stimuli in area V2 of macaque monkeys,” J. Neurosci. 24, 3313-3324 (2004).
[CrossRef] [PubMed]

H. Zhou, H. S. Friedman, and R. von der Heydt, “Coding of border ownership in monkey visual cortex,” J. Neurosci. 20, 6594-6611 (2000).
[PubMed]

V. A. Lamme, “The neurophysiology of figure-ground segregation in primary visual cortex,” J. Neurosci. 15, 1605-1615 (1995).
[PubMed]

J. Opt. Soc. Am. A (2)

J. Physiol. (London) (2)

D. G. Albrecht, S. B. Farrar, and D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex,” J. Physiol. (London) 347, 713-739 (1984).

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237-260 (1969).

J. Vis. Soc. Jpn. Suppl. (1)

Y. Tsuji and K. Sakai, “Orientation dependency in border-ownership dependent tilt aftereffect,” J. Vis. Soc. Jpn. Suppl. 18, 143 (2006).

Nat. Neurosci. (1)

F. Qiu, T. Sugihara, and R. von der Heydt, “Figure-ground mechanisms provide structure for selective attention,” Nat. Neurosci. 10, 1492-1499 (2007).
[CrossRef] [PubMed]

Nature (1)

A. M. Sillito, K. L. Grieve, H. E. Jones, J. Cudeiro, and J. Davis, “Visual cortical mechanisms detecting focal orientation discontinuities,” Nature 378, 492-496 (1995).
[CrossRef] [PubMed]

Neurocomputing (1)

H. Nishimura and K. Sakai, “Determination of border-ownership based on the surround context of contrast,” Neurocomputing 58-60, 843-848 (2004).
[CrossRef]

Neuron (1)

V. Dragoi, J. Sharma, and M. Sur, “Adaptation-induced plasticity of orientation tuning in adult visual cortex,” Neuron 28, 287-298 (2000).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. B (1)

C. W. Clifford, P. Wenderoth, and B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. London, Ser. B 267, 1705-1710 (2000).
[CrossRef]

Psychol. Rev. (1)

M. Coltheart, “Visual feature-analyzers and the after effects of tilt and curvature,” Psychol. Rev. 78, 114-121 (1971).
[CrossRef] [PubMed]

Science (2)

R. von der Heydt, E. Peterhans, and G. Baumgartner, “Illusory contours and cortical neuron responses,” Science 224, 1260-1262 (1984).
[CrossRef] [PubMed]

J. R. Müller, A. B. Metha, J. Krauskopf, and P. Lennie, “Rapid adaptation in visual cortex to the structure of images,” Science 285, 1405-1408 (1999).
[CrossRef] [PubMed]

Vision Res. (1)

M. J. Wainwright, “Visual adaptation as optimal information transmission,” Vision Res. 39, 3960-3974 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustration for border-ownership (BO) selectivity. In this illustration a square shape is presented on either the left or right side of the neuron’s classical receptive field (CRF) against a uniform background, while a vertical edge is aligned to its preferred orientation. Although a local contrast polarity within the CRF is identical in both stimulus conditions, this neuron strongly responds to the stimulus in which a square is shown on the left side of the CRF, as represented by the height of the black bars. This characteristic was termed as “border ownership,” found in the macaque visual cortex [5]. Note that the “+” symbol and the ellipse indicate a fixation point and the outline of the CRF, respectively.

Fig. 2
Fig. 2

Experimental procedure. (Left) Stimulus configuration during the adaptation phase. Midpoint of the tilted edge ( 15 ° ) of a trapezoid was situated at 0.86 arc deg beside a fixation point (indicated by a small black dot). Two trapezoids were shown alternatively for 500 ms each with a 100 ms blank period, and 80 pairs were presented. This gives a 96 s adaptation in total. (Right) Paradigm of stimulus configuration during the test phase. A test stimulus was shown on the left or right side of the adapted location for 200 ms each. As an example of the test stimuli, the two vertical bar stimulus is shown here. The range of orientation of the vertical bar at the adapted location varied randomly within ± 2 ° at intervals of 0.2 ° . Subjects were asked to report to which side the vertical bar of the square at the adapted location appeared tilted. In the test phase, adaptation with four pairs of trapezoids followed the two test stimuli.

Fig. 3
Fig. 3

Adaptation stimulus and test stimulus. In all the experiments, subjects were first exposed to an adaptation stimulus (left column). In Experiments 1 and 3, the adaptation stimulus was a trapezoid. In Experiment 2, an isosceles trapezoid and a parallelogram were added in addition to a trapezoid. Solid and dotted lines indicate the stimulus shown on the left and right side of the fixation point (a small black dot), respectively. The center and right columns show the test stimuli presented on the left and right side of the fixation point, respectively.

Fig. 4
Fig. 4

Observed BO-TAE as a function of the absolute orientation difference in Experiment 1. Three types of filled icons identify the subjects, and the open circles show the mean BO-TAE among the three subjects, with the error bars indicating 95% confidence intervals. BO-TAE was estimated by the bootstrap method described in the text. The larger TAE is observed for the more similar orientations between the distal test bar and the adaptation bar.

Fig. 5
Fig. 5

Model of BO-TAE. We consider three groups of BO-selective neurons whose optimal orientation is different (cell A, cell B, and cell C). (a) Edge of a trapezoid stimulates the cell’s CRF (indicated by an ellipse). Here we assume, for convenience and simplicity, that BO-selective cells have an excitatory region on the left side of the CRF (a gray circle) and an inhibitory region on the right side of the CRF (a hatched circle). The optimal orientation of cell A matches the orientation of the edge of a trapezoid. Thus, responses of cell A are strongest among the three cells (a black bar). In turn, the responses of cell A would be most effectively fatigued after adaptation (a gray bar). (b) After adaptation, the distal test bar stimulates the excitatory region, which induces cross-orientation facilitation on the responses of the cells (an arrow). The effectiveness of the facilitation depends on the difference between the orientation of the distal test bar and the optimum orientation. When a population of BO-selective cells is considered by the sum of the responses (all three black bars with arrows), the position of the peak of the population response determines how the test bar is perceived (indicated by the bar inside the dashed square with a fixation spot).

Fig. 6
Fig. 6

Observed BO-TAE in Experiment 2. There were six different combinations of the adaptation stimuli and the test stimuli. The observed BO-TAE is plotted by conditions. The notation is the same as in Fig. 4. In most of the cases, a significant TAE is observed if the adaptation bar and the distal test bar have the same orientation.

Fig. 7
Fig. 7

Observed BO-TAE in Experiment 3. There were six different test stimuli, and the observed BO-TAE is plotted by conditions. The notation is the same as in Fig. 4. A significant TAE is observed even if the distal test bar is thicker that the adaptation bar.

Fig. 8
Fig. 8

Schematic illustration for a possible explanation of the result in Experiment 3. The notation is the same as in Fig. 5. As the response difference between cell A and cell C becomes larger, the observed BO-TAE also becomes larger. The response difference is represented as the distance between the two dashed lines in case 1 (same width) and case 2 (wider distal test bar). Under the assumption that the stronger the responses become, the more net gain of the responses is given, the difference in responses between cell A and cell C becomes larger in case 2 above. As a consequence of the larger difference in case 2, the peak of population responses of BO-selective cells will be shifted a little farther away from the adapted orientation, resulting in stronger BO-TAE in case 2.

Tables (3)

Tables Icon

Table 1 Observed BO-TAE and 95% Confidence Interval: Experiment 1

Tables Icon

Table 2 Observed BO-TAE and 95% Confidence Interval: Experiment 2

Tables Icon

Table 3 Observed BO-TAE and 95% Confidence Interval: Experiment 3

Metrics