Abstract

In many natural scenes, shadows and shading, which are primarily luminance-defined features, proliferate. Hence one might expect that the chromatic variations of natural scenes, which more faithfully represent the layout of object surfaces, will contain relatively fewer and larger uniform regions than the luminance variations, i.e., will be more “patchy.” This idea was tested using images of natural scenes that were decomposed into chromatic and luminance layers modeled as the responses of the red–green, blue–yellow, and luminance channels of the human visual system. Patchiness was defined as the portion of pixels falling within a ± threshold in the bandpass-filtered image, averaged across multiple filter scales. The red–green layers were found to be the most patchy, followed by the blue–yellow layers, with the luminance layers the least patchy. The correlation between image-layer patchiness and the slope of the Fourier amplitude spectrum was small and negative for all layers, the maximum value being for red–green (0.48). We conclude that the chromatic layers of natural scenes contain more uniform areas than the luminance layers and that this is unpredicted by the slope of the Fourier amplitude spectrum.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. B. Barlow, “Sensory mechanisms, the reduction of redundancy, and intelligence,” in the NPL Symposium on the Mechanisation of Thought Processes (National Physical Laboratory, 1959), pp. 371-394.
  2. J. M. Rubin and W. A. Richards, “Color vision and image intensities: when are changes material?” Biol. Cybern. 45, 215-226 (1982).
    [CrossRef] [PubMed]
  3. J. J. Atick, Z. Li, and A. N. Redlich, “Understanding retinal color coding from first principles,” Neural Comput. 4, 559-572 (1992).
    [CrossRef]
  4. S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143-166 (2008).
    [CrossRef]
  5. B. C. Hansen and R. F. Hess, “Structural sparseness and spatial phase alignment in natural scenes,” J. Opt. Soc. Am. A 24, 1873-1885 (2007).
    [CrossRef]
  6. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379-2394 (1987).
    [CrossRef] [PubMed]
  7. D. J. Tolhurst, Y. Tadmor, and T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229-232 (1992).
    [CrossRef] [PubMed]
  8. C. A. Parraga, G. Brelstaff, T. Troscianko, and I. R. Moorehead, “Color and luminance information in natural scenes,” J. Opt. Soc. Am. A 15, 563-569 (1998).
    [CrossRef]
  9. C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483-487 (2002).
    [CrossRef] [PubMed]
  10. M. F. Tappen, W. T. Freeman, and E. H. Adelson, “Recovering intrinsic images from a single image,” Adv. Neural Inf. Process. Syst. 15, 1459-1472 (2002).
  11. A. Olmos and F. A. A. Kingdom, “A biologically inspired algorithm for the recovery of shading and reflectance images,” Perception 33, 1463-1473 (2004).
    [CrossRef]
  12. A. P. Johnson, F. Kingdom, and C. J. Baker, “Spatiochromatic statistics of natural scenes: first- and second-order information and their correlational structure,” J. Opt. Soc. Am. A 22, 2050-2059 (2005).
    [CrossRef]
  13. M. E. Churma, “Blue shadows: physical, physiological, and psychological causes,” Appl. Opt. 33, 4719-4722 (1994).
    [CrossRef] [PubMed]
  14. D. J. Field, “What is the goal of sensory coding?” Neural Comput. 6, 559-601 (1994).
    [CrossRef]
  15. F., A. A. Kingdom, A. Hayes, and D. J. Field, “Sensitivity to contrast histogram differences in synthetic wavelet-textures,” Vision Res. 41, 585-598 (2001).
    [CrossRef] [PubMed]
  16. R. A. Boie and I. J. Cox, “An analysis of camera noise,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 671-674 (1992).
    [CrossRef]
  17. D. L. Ruderman, T. W. Cronin, and C. C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 152036-2045 (1998).
    [CrossRef]
  18. D. J. Field, “Scale-invariance and self-similar 'wavelet' transforms: an analysis of natural scenes and mammalian visual systems,” in Wavelets, Fractals, and Fourier Transforms, M.Farge, J. C. R. Hunt, and J. C. Vassilicos, eds. (Clarendon, 1993), pp. 151-194.
  19. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379-2394 (1987).
    [CrossRef] [PubMed]
  20. A. Olmos and F. Kingdom, “McGill Calibrated Colour Image Database” (McGill Vision Research, 2004), http://tabby.vision.mcgill.ca.
  21. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500nm,” Vision Res. 15, 161-171 (1975).
    [CrossRef] [PubMed]
  22. F. A. Kingdom, C. Beauce, and L. Hunter, “Colour vision brings clarity to shadows,” J. Vision 3, 637-637 (2003).
    [CrossRef]
  23. K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. (London) 359, 381-400 (1985).
  24. G. J. C. Van Der Horst and M. A. Bouman, “Spatio-temporal chromaticity discrimination,” J. Opt. Soc. Am. 59, 1482-1488 (1969).
    [CrossRef] [PubMed]
  25. P. K. Ahnelt, H. Kolb, and R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18-34 (1987).
    [CrossRef] [PubMed]
  26. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610-624 (1991).
    [CrossRef] [PubMed]
  27. A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395-412 (1974).
    [CrossRef]
  28. A. Bradley, X. Zhang, and L. Thibos, “Failures of isoluminance caused by ocular chromatic aberrations,” Appl. Opt. 31, 3657-3667 (1992).
    [CrossRef] [PubMed]

2008 (1)

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143-166 (2008).
[CrossRef]

2007 (1)

2005 (1)

2004 (1)

A. Olmos and F. A. A. Kingdom, “A biologically inspired algorithm for the recovery of shading and reflectance images,” Perception 33, 1463-1473 (2004).
[CrossRef]

2003 (1)

F. A. Kingdom, C. Beauce, and L. Hunter, “Colour vision brings clarity to shadows,” J. Vision 3, 637-637 (2003).
[CrossRef]

2002 (2)

C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483-487 (2002).
[CrossRef] [PubMed]

M. F. Tappen, W. T. Freeman, and E. H. Adelson, “Recovering intrinsic images from a single image,” Adv. Neural Inf. Process. Syst. 15, 1459-1472 (2002).

2001 (1)

F., A. A. Kingdom, A. Hayes, and D. J. Field, “Sensitivity to contrast histogram differences in synthetic wavelet-textures,” Vision Res. 41, 585-598 (2001).
[CrossRef] [PubMed]

1998 (2)

1994 (2)

1992 (4)

A. Bradley, X. Zhang, and L. Thibos, “Failures of isoluminance caused by ocular chromatic aberrations,” Appl. Opt. 31, 3657-3667 (1992).
[CrossRef] [PubMed]

R. A. Boie and I. J. Cox, “An analysis of camera noise,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 671-674 (1992).
[CrossRef]

D. J. Tolhurst, Y. Tadmor, and T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229-232 (1992).
[CrossRef] [PubMed]

J. J. Atick, Z. Li, and A. N. Redlich, “Understanding retinal color coding from first principles,” Neural Comput. 4, 559-572 (1992).
[CrossRef]

1991 (1)

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610-624 (1991).
[CrossRef] [PubMed]

1987 (3)

1985 (1)

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. (London) 359, 381-400 (1985).

1982 (1)

J. M. Rubin and W. A. Richards, “Color vision and image intensities: when are changes material?” Biol. Cybern. 45, 215-226 (1982).
[CrossRef] [PubMed]

1975 (1)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500nm,” Vision Res. 15, 161-171 (1975).
[CrossRef] [PubMed]

1974 (1)

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395-412 (1974).
[CrossRef]

1969 (1)

Adelson, E. H.

M. F. Tappen, W. T. Freeman, and E. H. Adelson, “Recovering intrinsic images from a single image,” Adv. Neural Inf. Process. Syst. 15, 1459-1472 (2002).

Ahnelt, P. K.

P. K. Ahnelt, H. Kolb, and R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18-34 (1987).
[CrossRef] [PubMed]

Allen, K. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610-624 (1991).
[CrossRef] [PubMed]

Atick, J. J.

J. J. Atick, Z. Li, and A. N. Redlich, “Understanding retinal color coding from first principles,” Neural Comput. 4, 559-572 (1992).
[CrossRef]

Baker, C. J.

Barlow, H. B.

H. B. Barlow, “Sensory mechanisms, the reduction of redundancy, and intelligence,” in the NPL Symposium on the Mechanisation of Thought Processes (National Physical Laboratory, 1959), pp. 371-394.

Beauce, C.

F. A. Kingdom, C. Beauce, and L. Hunter, “Colour vision brings clarity to shadows,” J. Vision 3, 637-637 (2003).
[CrossRef]

Boie, R. A.

R. A. Boie and I. J. Cox, “An analysis of camera noise,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 671-674 (1992).
[CrossRef]

Bouman, M. A.

Bradley, A.

Brelstaff, G.

Chao, T.

D. J. Tolhurst, Y. Tadmor, and T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229-232 (1992).
[CrossRef] [PubMed]

Chiao, C. C.

Churma, M. E.

Cox, I. J.

R. A. Boie and I. J. Cox, “An analysis of camera noise,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 671-674 (1992).
[CrossRef]

Cronin, T. W.

Curcio, C. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610-624 (1991).
[CrossRef] [PubMed]

Field, D. J.

F., A. A. Kingdom, A. Hayes, and D. J. Field, “Sensitivity to contrast histogram differences in synthetic wavelet-textures,” Vision Res. 41, 585-598 (2001).
[CrossRef] [PubMed]

D. J. Field, “What is the goal of sensory coding?” Neural Comput. 6, 559-601 (1994).
[CrossRef]

D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379-2394 (1987).
[CrossRef] [PubMed]

D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379-2394 (1987).
[CrossRef] [PubMed]

D. J. Field, “Scale-invariance and self-similar 'wavelet' transforms: an analysis of natural scenes and mammalian visual systems,” in Wavelets, Fractals, and Fourier Transforms, M.Farge, J. C. R. Hunt, and J. C. Vassilicos, eds. (Clarendon, 1993), pp. 151-194.

Freeman, W. T.

M. F. Tappen, W. T. Freeman, and E. H. Adelson, “Recovering intrinsic images from a single image,” Adv. Neural Inf. Process. Syst. 15, 1459-1472 (2002).

Hansen, B. C.

Hayes, A.

F., A. A. Kingdom, A. Hayes, and D. J. Field, “Sensitivity to contrast histogram differences in synthetic wavelet-textures,” Vision Res. 41, 585-598 (2001).
[CrossRef] [PubMed]

Hess, R. F.

Hunt, J. C. R.

D. J. Field, “Scale-invariance and self-similar 'wavelet' transforms: an analysis of natural scenes and mammalian visual systems,” in Wavelets, Fractals, and Fourier Transforms, M.Farge, J. C. R. Hunt, and J. C. Vassilicos, eds. (Clarendon, 1993), pp. 151-194.

Hunter, L.

F. A. Kingdom, C. Beauce, and L. Hunter, “Colour vision brings clarity to shadows,” J. Vision 3, 637-637 (2003).
[CrossRef]

Hurley, J. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610-624 (1991).
[CrossRef] [PubMed]

Johnson, A. P.

Kingdom, F.

Kingdom, F. A.

F. A. Kingdom, C. Beauce, and L. Hunter, “Colour vision brings clarity to shadows,” J. Vision 3, 637-637 (2003).
[CrossRef]

Kingdom, F. A. A.

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143-166 (2008).
[CrossRef]

A. Olmos and F. A. A. Kingdom, “A biologically inspired algorithm for the recovery of shading and reflectance images,” Perception 33, 1463-1473 (2004).
[CrossRef]

F., A. A. Kingdom, A. Hayes, and D. J. Field, “Sensitivity to contrast histogram differences in synthetic wavelet-textures,” Vision Res. 41, 585-598 (2001).
[CrossRef] [PubMed]

Klock, I. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610-624 (1991).
[CrossRef] [PubMed]

Kolb, H.

P. K. Ahnelt, H. Kolb, and R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18-34 (1987).
[CrossRef] [PubMed]

Lerea, C. L.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610-624 (1991).
[CrossRef] [PubMed]

Li, Z.

J. J. Atick, Z. Li, and A. N. Redlich, “Understanding retinal color coding from first principles,” Neural Comput. 4, 559-572 (1992).
[CrossRef]

Milam, A. H.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610-624 (1991).
[CrossRef] [PubMed]

Moorehead, I. R.

Mullen, K. T.

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. (London) 359, 381-400 (1985).

Olmos, A.

A. Olmos and F. A. A. Kingdom, “A biologically inspired algorithm for the recovery of shading and reflectance images,” Perception 33, 1463-1473 (2004).
[CrossRef]

A. Olmos and F. Kingdom, “McGill Calibrated Colour Image Database” (McGill Vision Research, 2004), http://tabby.vision.mcgill.ca.

Parraga, C. A.

Párraga, C. A.

C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483-487 (2002).
[CrossRef] [PubMed]

Pflug, R.

P. K. Ahnelt, H. Kolb, and R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18-34 (1987).
[CrossRef] [PubMed]

Pokorny, J.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500nm,” Vision Res. 15, 161-171 (1975).
[CrossRef] [PubMed]

Redlich, A. N.

J. J. Atick, Z. Li, and A. N. Redlich, “Understanding retinal color coding from first principles,” Neural Comput. 4, 559-572 (1992).
[CrossRef]

Richards, W. A.

J. M. Rubin and W. A. Richards, “Color vision and image intensities: when are changes material?” Biol. Cybern. 45, 215-226 (1982).
[CrossRef] [PubMed]

Rubin, J. M.

J. M. Rubin and W. A. Richards, “Color vision and image intensities: when are changes material?” Biol. Cybern. 45, 215-226 (1982).
[CrossRef] [PubMed]

Ruderman, D. L.

Shevell, S. K.

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143-166 (2008).
[CrossRef]

Sloan, K. R.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610-624 (1991).
[CrossRef] [PubMed]

Smith, V. C.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500nm,” Vision Res. 15, 161-171 (1975).
[CrossRef] [PubMed]

Tadmor, Y.

D. J. Tolhurst, Y. Tadmor, and T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229-232 (1992).
[CrossRef] [PubMed]

Tappen, M. F.

M. F. Tappen, W. T. Freeman, and E. H. Adelson, “Recovering intrinsic images from a single image,” Adv. Neural Inf. Process. Syst. 15, 1459-1472 (2002).

Thibos, L.

Tolhurst, D. J.

C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483-487 (2002).
[CrossRef] [PubMed]

D. J. Tolhurst, Y. Tadmor, and T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229-232 (1992).
[CrossRef] [PubMed]

Troscianko, T.

C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483-487 (2002).
[CrossRef] [PubMed]

C. A. Parraga, G. Brelstaff, T. Troscianko, and I. R. Moorehead, “Color and luminance information in natural scenes,” J. Opt. Soc. Am. A 15, 563-569 (1998).
[CrossRef]

Van Der Horst, G. J. C.

van Meeteren, A.

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395-412 (1974).
[CrossRef]

Vassilicos, J. C.

D. J. Field, “Scale-invariance and self-similar 'wavelet' transforms: an analysis of natural scenes and mammalian visual systems,” in Wavelets, Fractals, and Fourier Transforms, M.Farge, J. C. R. Hunt, and J. C. Vassilicos, eds. (Clarendon, 1993), pp. 151-194.

Zhang, X.

Adv. Neural Inf. Process. Syst. (1)

M. F. Tappen, W. T. Freeman, and E. H. Adelson, “Recovering intrinsic images from a single image,” Adv. Neural Inf. Process. Syst. 15, 1459-1472 (2002).

Annu. Rev. Psychol. (1)

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143-166 (2008).
[CrossRef]

Appl. Opt. (2)

Biol. Cybern. (1)

J. M. Rubin and W. A. Richards, “Color vision and image intensities: when are changes material?” Biol. Cybern. 45, 215-226 (1982).
[CrossRef] [PubMed]

Curr. Biol. (1)

C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483-487 (2002).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

R. A. Boie and I. J. Cox, “An analysis of camera noise,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 671-674 (1992).
[CrossRef]

J. Comp. Neurol. (2)

P. K. Ahnelt, H. Kolb, and R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18-34 (1987).
[CrossRef] [PubMed]

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610-624 (1991).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (6)

J. Physiol. (London) (1)

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. (London) 359, 381-400 (1985).

J. Vision (1)

F. A. Kingdom, C. Beauce, and L. Hunter, “Colour vision brings clarity to shadows,” J. Vision 3, 637-637 (2003).
[CrossRef]

Neural Comput. (2)

D. J. Field, “What is the goal of sensory coding?” Neural Comput. 6, 559-601 (1994).
[CrossRef]

J. J. Atick, Z. Li, and A. N. Redlich, “Understanding retinal color coding from first principles,” Neural Comput. 4, 559-572 (1992).
[CrossRef]

Ophthalmic Physiol. Opt. (1)

D. J. Tolhurst, Y. Tadmor, and T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229-232 (1992).
[CrossRef] [PubMed]

Opt. Acta (1)

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395-412 (1974).
[CrossRef]

Perception (1)

A. Olmos and F. A. A. Kingdom, “A biologically inspired algorithm for the recovery of shading and reflectance images,” Perception 33, 1463-1473 (2004).
[CrossRef]

Vision Res. (2)

F., A. A. Kingdom, A. Hayes, and D. J. Field, “Sensitivity to contrast histogram differences in synthetic wavelet-textures,” Vision Res. 41, 585-598 (2001).
[CrossRef] [PubMed]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500nm,” Vision Res. 15, 161-171 (1975).
[CrossRef] [PubMed]

Other (3)

A. Olmos and F. Kingdom, “McGill Calibrated Colour Image Database” (McGill Vision Research, 2004), http://tabby.vision.mcgill.ca.

D. J. Field, “Scale-invariance and self-similar 'wavelet' transforms: an analysis of natural scenes and mammalian visual systems,” in Wavelets, Fractals, and Fourier Transforms, M.Farge, J. C. R. Hunt, and J. C. Vassilicos, eds. (Clarendon, 1993), pp. 151-194.

H. B. Barlow, “Sensory mechanisms, the reduction of redundancy, and intelligence,” in the NPL Symposium on the Mechanisation of Thought Processes (National Physical Laboratory, 1959), pp. 371-394.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Measurement of kurtosis in the red–green layer of three natural scenes with different perceived patchiness (see text for details).

Fig. 2
Fig. 2

Effect of noise in the RGB images on the measurement of kurtosis in the three postreceptoral channel responses to a bipartite field. Each point represents the average kurtosis for five sample images with normally distributed noise.

Fig. 3
Fig. 3

Synthetic images and resulting measures of patchiness. PI, patchiness index.

Fig. 4
Fig. 4

Method for measuring patchiness. A sample image (a) with its luminance (b), red–green (c), and blue–yellow (d) channel responses. Below each filtered image is shown the pixel histogram and below each histogram is shown the binarized image after applying the fixed threshold. The index of patchiness on the right gives the average portion of light gray pixels in the four binarized images.

Fig. 5
Fig. 5

Comparison of patchiness indices of three layers in different categories. Lum, luminance.

Fig. 6
Fig. 6

(Top row) Four images whose red–green patchiness is greater than their luminance patchiness. (Bottom row) Four images whose luminance patchiness is greater than their red–green patchiness. Values of patchiness are shown underneath each image. Lum, luminance; RG, red–green; BY, blue–yellow.

Tables (3)

Tables Icon

Table 1 Comparison of Three Methods, Kurtosis, Standard-Deviation Threshold and Fixed Threshold for Estimating Patchiness, Using 30 Artificial Images with Added Noise a

Tables Icon

Table 2 Patchiness Index at Different Filter Scales

Tables Icon

Table 3 Patchiness Index in Different Categories Sorted by the Patchiness Index in Luminance a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F T ( x i , y i ) = { 1 F R ( x i , y i ) < + 1 . 5 * σ F R ( x i , y i ) > 1 . 5 * σ 0 elsewhere ,
F T ( x i , y i ) = { 1 F R ( x i , y i ) < + 0.07 F R ( x i , y i ) > 0.07 0 elsewhere ,
L C = log L log L ¯ , M C = log M log M ¯ ,
S C = log S log S ¯
l ̂ = ( L ̂ C + M ̂ C ) , α ̂ = ( L ̂ C + M ̂ C 2 S ̂ C ) , β ̂ = ( L ̂ C c ̂ C ) ,
L G ( f , θ ) = exp { [ log ( R ( f i , θ j ) F p e a k ) 2 2 log ( σ 1 F p e a k ) 2 ] } ,

Metrics