Abstract

An algorithm is presented for processing and analysis of differential interference contrast (DIC) microscopy images of the fovea to study the cone mosaic. The algorithm automatically locates the cones and their boundaries in such images and is assessed by comparison with results from manual analysis. Additional algorithms are presented that analyze the cone positions to extract information on cone neighbor relationships as well as the short-range order and domain structure of the mosaic. The methods are applied to DIC images of the human fovea.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Ahnelt and H. Kolb, “The mammalian photoreceptor mosaic - adaptive design,” Prog. Retin Eye Res. 19, 711-777 (2000).
    [CrossRef] [PubMed]
  2. J. E. Cook, “Spatial regularity among retinal neurons,” in The Visual Neurosciences, L.M.Chalupa and J.S.Warner eds., A Bradford Book (Massachusetts Institute of Technology, 2004), pp. 485-495.
  3. J. I. Yellott, “Spectral-analysis of spatial sampling by photoreceptors--topological disorder prevents aliasing,” Vision Res. 22, 1205-1210 (1982).
    [CrossRef] [PubMed]
  4. J. I. Yellott, “Spectral consequences of photoreceptor sampling in the rhesus retina,” Science 221, 382-385 (1983).
    [CrossRef] [PubMed]
  5. D. R. Williams and R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385-387 (1983).
    [CrossRef] [PubMed]
  6. D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195-205 (1985).
    [CrossRef] [PubMed]
  7. D. Pum, P. K. Ahnelt, and M. Grasl, “Iso-orientation areas in the foveal cone mosaic,” Visual Neurosci. 5, 511-523 (1990).
    [CrossRef]
  8. J. Hirsch and R. Hylton, “Quality of the primate photoreceptor lattice and limits of spatial vision,” Vision Res. 24, 347-355 (1984).
    [CrossRef] [PubMed]
  9. A. J. Ahumada, Jr., and A. Poirson, “Cone sampling array models,” J. Opt. Soc. Am. A 4, 1493-1502 (1987).
    [CrossRef] [PubMed]
  10. J. Hirsch and C. A. Curcio, “The spatial resolution capacity of human foveal retina,” Vision Res. 29, 1095-1101 (1989).
    [CrossRef] [PubMed]
  11. J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283-3291 (2007).
    [CrossRef]
  12. J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology (Philadelphia) 113, 1014-1019 (2006).
    [CrossRef]
  13. C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847-855 (1986).
    [CrossRef] [PubMed]
  14. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosiac,” J. Neurosci. 25, 9669-9679 (2005).
    [CrossRef] [PubMed]
  15. M. Xiao and A. Hendrickson, “Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones,” J. Comp. Neurol. 425, 545-559 (2000).
    [CrossRef] [PubMed]
  16. K. Bumsted and A. Hendrickson, “Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea,” J. Comp. Neurol. 403, 502-516 (1999).
    [CrossRef] [PubMed]
  17. E. E. Cornish, A. E. Hendrickson, and J. M. Provis, “Distribution of short-wavelength-sensitive cones in human fetal and postnatal retina: early development of spatial order and density profiles,” Vision Res. 44, 2019-2026 (2004).
    [CrossRef] [PubMed]
  18. R. J. Zawadski, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24, 1373-1383 (2007).
    [CrossRef]
  19. K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24, 1358-1363 (2007).
    [CrossRef]
  20. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520-522 (1999).
    [CrossRef] [PubMed]
  21. A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Math. Imaging Vision 2, 404-412 (2002).
  22. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
    [CrossRef] [PubMed]
  23. D. B. Murphy, Fundamentals of Light Microscopy and Digital Imaging (Wiley, 2001).
  24. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990).
    [CrossRef] [PubMed]
  25. O. Packer, A. E. Hendrickson, and C. A. Curcio, “Photoreceptor topography of the retina in the adult pigtail macaque (macaca nemestrina),” J. Comp. Neurol. 288, 165-183 (1989).
    [CrossRef] [PubMed]
  26. B. Xue, S. S. Choi, N. Doble, and J. S. Werner, “Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera,” J. Opt. Soc. Am. A 24, 1364-1372 (2007).
    [CrossRef]
  27. E. B. van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference microscope,” J. Microsc. 188, 149-157 (1997).
    [CrossRef]
  28. C. Preza, D. L. Snyder, and J. A. Conchello, “Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy,” J. Opt. Soc. Am. A 16, 2185-2199 (1999).
    [CrossRef]
  29. B. Heise, A. Sonnleitner, and E. P. Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Tech. 66, 312-320 (2005).
    [CrossRef] [PubMed]
  30. D. Young, C. A. Glasby, A. J. Gray, and N. J. Martin, “Towards automatic cell identification in DIC microscopy,” J. Microsc. 192, 186-193 (1998).
    [CrossRef] [PubMed]
  31. L. Vincent, “Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms,” IEEE Trans. Image Process. 16, 176-201 (1993).
    [CrossRef]
  32. S. L. Polyak, The Retina (University of Chicago Press, 1941).
  33. W. Brostow, J. P. Dussaults, and B. L. Fox, “Construction of Voronoi polyhedra,” J. Comput. Phys. 29, 81-92 (1978).
    [CrossRef]
  34. W. S. Cleveland, “Robust locally weighted regression and smoothing scatter plots,” J. Am. Stat. Assoc. 74, 829-836 (1979).
    [CrossRef]
  35. J. E. Dowling, “Foveal receptors of the monkey retina: fine structure,” Science 147, 57-59 (1965).
    [CrossRef] [PubMed]
  36. W. Krebs and I. P. Krebs, “Quantitative morphology of the central fovea in the primate retina,” Am. J. Anat. 184, 225-236 (1989).
    [CrossRef] [PubMed]
  37. B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, “The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones,” Am. J. Anat. 159, 125-146 (1980).
    [CrossRef] [PubMed]
  38. C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: Variation with eccentricity and evidence for local anisotropy,” Visual Neurosci. 9, 169-180 (1992).
    [CrossRef]
  39. C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrikson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial symmetry,” Science 236, 579-582 (1987).
    [CrossRef] [PubMed]
  40. J. Hirsch and W. H. Miller, “Does cone positional disorder limit resolution,” J. Opt. Soc. Am. A 4, 1481-1492 (1987).
    [CrossRef] [PubMed]
  41. P. K. Ahnelt, “The photoreceptor mosaic,” Eye 12, 531-540 (1998).
    [CrossRef] [PubMed]

2007 (4)

2006 (1)

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology (Philadelphia) 113, 1014-1019 (2006).
[CrossRef]

2005 (2)

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosiac,” J. Neurosci. 25, 9669-9679 (2005).
[CrossRef] [PubMed]

B. Heise, A. Sonnleitner, and E. P. Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Tech. 66, 312-320 (2005).
[CrossRef] [PubMed]

2004 (2)

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
[CrossRef] [PubMed]

E. E. Cornish, A. E. Hendrickson, and J. M. Provis, “Distribution of short-wavelength-sensitive cones in human fetal and postnatal retina: early development of spatial order and density profiles,” Vision Res. 44, 2019-2026 (2004).
[CrossRef] [PubMed]

2002 (1)

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Math. Imaging Vision 2, 404-412 (2002).

2000 (2)

M. Xiao and A. Hendrickson, “Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones,” J. Comp. Neurol. 425, 545-559 (2000).
[CrossRef] [PubMed]

P. K. Ahnelt and H. Kolb, “The mammalian photoreceptor mosaic - adaptive design,” Prog. Retin Eye Res. 19, 711-777 (2000).
[CrossRef] [PubMed]

1999 (3)

K. Bumsted and A. Hendrickson, “Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea,” J. Comp. Neurol. 403, 502-516 (1999).
[CrossRef] [PubMed]

C. Preza, D. L. Snyder, and J. A. Conchello, “Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy,” J. Opt. Soc. Am. A 16, 2185-2199 (1999).
[CrossRef]

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520-522 (1999).
[CrossRef] [PubMed]

1998 (2)

D. Young, C. A. Glasby, A. J. Gray, and N. J. Martin, “Towards automatic cell identification in DIC microscopy,” J. Microsc. 192, 186-193 (1998).
[CrossRef] [PubMed]

P. K. Ahnelt, “The photoreceptor mosaic,” Eye 12, 531-540 (1998).
[CrossRef] [PubMed]

1997 (1)

E. B. van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference microscope,” J. Microsc. 188, 149-157 (1997).
[CrossRef]

1993 (1)

L. Vincent, “Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms,” IEEE Trans. Image Process. 16, 176-201 (1993).
[CrossRef]

1992 (1)

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: Variation with eccentricity and evidence for local anisotropy,” Visual Neurosci. 9, 169-180 (1992).
[CrossRef]

1990 (2)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

D. Pum, P. K. Ahnelt, and M. Grasl, “Iso-orientation areas in the foveal cone mosaic,” Visual Neurosci. 5, 511-523 (1990).
[CrossRef]

1989 (3)

J. Hirsch and C. A. Curcio, “The spatial resolution capacity of human foveal retina,” Vision Res. 29, 1095-1101 (1989).
[CrossRef] [PubMed]

O. Packer, A. E. Hendrickson, and C. A. Curcio, “Photoreceptor topography of the retina in the adult pigtail macaque (macaca nemestrina),” J. Comp. Neurol. 288, 165-183 (1989).
[CrossRef] [PubMed]

W. Krebs and I. P. Krebs, “Quantitative morphology of the central fovea in the primate retina,” Am. J. Anat. 184, 225-236 (1989).
[CrossRef] [PubMed]

1987 (3)

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrikson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial symmetry,” Science 236, 579-582 (1987).
[CrossRef] [PubMed]

J. Hirsch and W. H. Miller, “Does cone positional disorder limit resolution,” J. Opt. Soc. Am. A 4, 1481-1492 (1987).
[CrossRef] [PubMed]

A. J. Ahumada, Jr., and A. Poirson, “Cone sampling array models,” J. Opt. Soc. Am. A 4, 1493-1502 (1987).
[CrossRef] [PubMed]

1986 (1)

C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847-855 (1986).
[CrossRef] [PubMed]

1985 (1)

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195-205 (1985).
[CrossRef] [PubMed]

1984 (1)

J. Hirsch and R. Hylton, “Quality of the primate photoreceptor lattice and limits of spatial vision,” Vision Res. 24, 347-355 (1984).
[CrossRef] [PubMed]

1983 (2)

J. I. Yellott, “Spectral consequences of photoreceptor sampling in the rhesus retina,” Science 221, 382-385 (1983).
[CrossRef] [PubMed]

D. R. Williams and R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385-387 (1983).
[CrossRef] [PubMed]

1982 (1)

J. I. Yellott, “Spectral-analysis of spatial sampling by photoreceptors--topological disorder prevents aliasing,” Vision Res. 22, 1205-1210 (1982).
[CrossRef] [PubMed]

1980 (1)

B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, “The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones,” Am. J. Anat. 159, 125-146 (1980).
[CrossRef] [PubMed]

1979 (1)

W. S. Cleveland, “Robust locally weighted regression and smoothing scatter plots,” J. Am. Stat. Assoc. 74, 829-836 (1979).
[CrossRef]

1978 (1)

W. Brostow, J. P. Dussaults, and B. L. Fox, “Construction of Voronoi polyhedra,” J. Comput. Phys. 29, 81-92 (1978).
[CrossRef]

1965 (1)

J. E. Dowling, “Foveal receptors of the monkey retina: fine structure,” Science 147, 57-59 (1965).
[CrossRef] [PubMed]

Ahnelt, P. K.

P. K. Ahnelt and H. Kolb, “The mammalian photoreceptor mosaic - adaptive design,” Prog. Retin Eye Res. 19, 711-777 (2000).
[CrossRef] [PubMed]

P. K. Ahnelt, “The photoreceptor mosaic,” Eye 12, 531-540 (1998).
[CrossRef] [PubMed]

D. Pum, P. K. Ahnelt, and M. Grasl, “Iso-orientation areas in the foveal cone mosaic,” Visual Neurosci. 5, 511-523 (1990).
[CrossRef]

Ahumada, A. J.

Aten, J. A.

E. B. van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference microscope,” J. Microsc. 188, 149-157 (1997).
[CrossRef]

Borwein, B.

B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, “The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones,” Am. J. Anat. 159, 125-146 (1980).
[CrossRef] [PubMed]

Borwein, D.

B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, “The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones,” Am. J. Anat. 159, 125-146 (1980).
[CrossRef] [PubMed]

Branham, K. E.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283-3291 (2007).
[CrossRef]

Brostow, W.

W. Brostow, J. P. Dussaults, and B. L. Fox, “Construction of Voronoi polyhedra,” J. Comput. Phys. 29, 81-92 (1978).
[CrossRef]

Bumsted, K.

K. Bumsted and A. Hendrickson, “Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea,” J. Comp. Neurol. 403, 502-516 (1999).
[CrossRef] [PubMed]

Carroll, J.

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology (Philadelphia) 113, 1014-1019 (2006).
[CrossRef]

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosiac,” J. Neurosci. 25, 9669-9679 (2005).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
[CrossRef] [PubMed]

Choi, S. S.

Chung, M.

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology (Philadelphia) 113, 1014-1019 (2006).
[CrossRef]

Cleveland, W. S.

W. S. Cleveland, “Robust locally weighted regression and smoothing scatter plots,” J. Am. Stat. Assoc. 74, 829-836 (1979).
[CrossRef]

Collier, R.

D. R. Williams and R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385-387 (1983).
[CrossRef] [PubMed]

Conchello, J. A.

Cook, J. E.

J. E. Cook, “Spatial regularity among retinal neurons,” in The Visual Neurosciences, L.M.Chalupa and J.S.Warner eds., A Bradford Book (Massachusetts Institute of Technology, 2004), pp. 485-495.

Cornish, E. E.

E. E. Cornish, A. E. Hendrickson, and J. M. Provis, “Distribution of short-wavelength-sensitive cones in human fetal and postnatal retina: early development of spatial order and density profiles,” Vision Res. 44, 2019-2026 (2004).
[CrossRef] [PubMed]

Curcio, C. A.

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: Variation with eccentricity and evidence for local anisotropy,” Visual Neurosci. 9, 169-180 (1992).
[CrossRef]

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

O. Packer, A. E. Hendrickson, and C. A. Curcio, “Photoreceptor topography of the retina in the adult pigtail macaque (macaca nemestrina),” J. Comp. Neurol. 288, 165-183 (1989).
[CrossRef] [PubMed]

J. Hirsch and C. A. Curcio, “The spatial resolution capacity of human foveal retina,” Vision Res. 29, 1095-1101 (1989).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrikson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial symmetry,” Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Doble, N.

Dowling, J. E.

J. E. Dowling, “Foveal receptors of the monkey retina: fine structure,” Science 147, 57-59 (1965).
[CrossRef] [PubMed]

Duncan, J. L.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283-3291 (2007).
[CrossRef]

Dussaults, J. P.

W. Brostow, J. P. Dussaults, and B. L. Fox, “Construction of Voronoi polyhedra,” J. Comput. Phys. 29, 81-92 (1978).
[CrossRef]

Fox, B. L.

W. Brostow, J. P. Dussaults, and B. L. Fox, “Construction of Voronoi polyhedra,” J. Comput. Phys. 29, 81-92 (1978).
[CrossRef]

Gandhi, J.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283-3291 (2007).
[CrossRef]

Glasby, C. A.

D. Young, C. A. Glasby, A. J. Gray, and N. J. Martin, “Towards automatic cell identification in DIC microscopy,” J. Microsc. 192, 186-193 (1998).
[CrossRef] [PubMed]

Grasl, M.

D. Pum, P. K. Ahnelt, and M. Grasl, “Iso-orientation areas in the foveal cone mosaic,” Visual Neurosci. 5, 511-523 (1990).
[CrossRef]

Gray, A. J.

D. Young, C. A. Glasby, A. J. Gray, and N. J. Martin, “Towards automatic cell identification in DIC microscopy,” J. Microsc. 192, 186-193 (1998).
[CrossRef] [PubMed]

Heise, B.

B. Heise, A. Sonnleitner, and E. P. Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Tech. 66, 312-320 (2005).
[CrossRef] [PubMed]

Hendrickson, A.

M. Xiao and A. Hendrickson, “Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones,” J. Comp. Neurol. 425, 545-559 (2000).
[CrossRef] [PubMed]

K. Bumsted and A. Hendrickson, “Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea,” J. Comp. Neurol. 403, 502-516 (1999).
[CrossRef] [PubMed]

C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847-855 (1986).
[CrossRef] [PubMed]

Hendrickson, A. E.

E. E. Cornish, A. E. Hendrickson, and J. M. Provis, “Distribution of short-wavelength-sensitive cones in human fetal and postnatal retina: early development of spatial order and density profiles,” Vision Res. 44, 2019-2026 (2004).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

O. Packer, A. E. Hendrickson, and C. A. Curcio, “Photoreceptor topography of the retina in the adult pigtail macaque (macaca nemestrina),” J. Comp. Neurol. 288, 165-183 (1989).
[CrossRef] [PubMed]

Hendrikson, A. E.

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrikson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial symmetry,” Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Hirsch, J.

J. Hirsch and C. A. Curcio, “The spatial resolution capacity of human foveal retina,” Vision Res. 29, 1095-1101 (1989).
[CrossRef] [PubMed]

J. Hirsch and W. H. Miller, “Does cone positional disorder limit resolution,” J. Opt. Soc. Am. A 4, 1481-1492 (1987).
[CrossRef] [PubMed]

J. Hirsch and R. Hylton, “Quality of the primate photoreceptor lattice and limits of spatial vision,” Vision Res. 24, 347-355 (1984).
[CrossRef] [PubMed]

Hofer, H.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosiac,” J. Neurosci. 25, 9669-9679 (2005).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
[CrossRef] [PubMed]

Hylton, R.

J. Hirsch and R. Hylton, “Quality of the primate photoreceptor lattice and limits of spatial vision,” Vision Res. 24, 347-355 (1984).
[CrossRef] [PubMed]

Jones, S. M.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrikson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial symmetry,” Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Klement, E. P.

B. Heise, A. Sonnleitner, and E. P. Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Tech. 66, 312-320 (2005).
[CrossRef] [PubMed]

Kolb, H.

P. K. Ahnelt and H. Kolb, “The mammalian photoreceptor mosaic - adaptive design,” Prog. Retin Eye Res. 19, 711-777 (2000).
[CrossRef] [PubMed]

Krebs, I. P.

W. Krebs and I. P. Krebs, “Quantitative morphology of the central fovea in the primate retina,” Am. J. Anat. 184, 225-236 (1989).
[CrossRef] [PubMed]

Krebs, W.

W. Krebs and I. P. Krebs, “Quantitative morphology of the central fovea in the primate retina,” Am. J. Anat. 184, 225-236 (1989).
[CrossRef] [PubMed]

Li, K. Y.

Martin, N. J.

D. Young, C. A. Glasby, A. J. Gray, and N. J. Martin, “Towards automatic cell identification in DIC microscopy,” J. Microsc. 192, 186-193 (1998).
[CrossRef] [PubMed]

McGowan, J. W.

B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, “The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones,” Am. J. Anat. 159, 125-146 (1980).
[CrossRef] [PubMed]

Medeiros, J.

B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, “The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones,” Am. J. Anat. 159, 125-146 (1980).
[CrossRef] [PubMed]

Miller, W. H.

Murphy, D. B.

D. B. Murphy, Fundamentals of Light Microscopy and Digital Imaging (Wiley, 2001).

Nakanishi, C.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283-3291 (2007).
[CrossRef]

Neitz, J.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosiac,” J. Neurosci. 25, 9669-9679 (2005).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
[CrossRef] [PubMed]

Neitz, M.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosiac,” J. Neurosci. 25, 9669-9679 (2005).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
[CrossRef] [PubMed]

Oliver, S. S.

Othman, M.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283-3291 (2007).
[CrossRef]

Packer, O.

O. Packer, A. E. Hendrickson, and C. A. Curcio, “Photoreceptor topography of the retina in the adult pigtail macaque (macaca nemestrina),” J. Comp. Neurol. 288, 165-183 (1989).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrikson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial symmetry,” Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Poirson, A.

Polyak, S. L.

S. L. Polyak, The Retina (University of Chicago Press, 1941).

Preza, C.

Provis, J. M.

E. E. Cornish, A. E. Hendrickson, and J. M. Provis, “Distribution of short-wavelength-sensitive cones in human fetal and postnatal retina: early development of spatial order and density profiles,” Vision Res. 44, 2019-2026 (2004).
[CrossRef] [PubMed]

Pum, D.

D. Pum, P. K. Ahnelt, and M. Grasl, “Iso-orientation areas in the foveal cone mosaic,” Visual Neurosci. 5, 511-523 (1990).
[CrossRef]

Roorda, A.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283-3291 (2007).
[CrossRef]

K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24, 1358-1363 (2007).
[CrossRef]

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology (Philadelphia) 113, 1014-1019 (2006).
[CrossRef]

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Math. Imaging Vision 2, 404-412 (2002).

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520-522 (1999).
[CrossRef] [PubMed]

Sloan, K. R.

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: Variation with eccentricity and evidence for local anisotropy,” Visual Neurosci. 9, 169-180 (1992).
[CrossRef]

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrikson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial symmetry,” Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Snyder, D. L.

Sonnleitner, A.

B. Heise, A. Sonnleitner, and E. P. Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Tech. 66, 312-320 (2005).
[CrossRef] [PubMed]

Swaroop, A.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283-3291 (2007).
[CrossRef]

van Munster, E. B.

E. B. van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference microscope,” J. Microsc. 188, 149-157 (1997).
[CrossRef]

van Vliet, L. J.

E. B. van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference microscope,” J. Microsc. 188, 149-157 (1997).
[CrossRef]

Vincent, L.

L. Vincent, “Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms,” IEEE Trans. Image Process. 16, 176-201 (1993).
[CrossRef]

Werner, J. S.

Williams, D. R.

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology (Philadelphia) 113, 1014-1019 (2006).
[CrossRef]

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosiac,” J. Neurosci. 25, 9669-9679 (2005).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
[CrossRef] [PubMed]

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Math. Imaging Vision 2, 404-412 (2002).

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520-522 (1999).
[CrossRef] [PubMed]

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195-205 (1985).
[CrossRef] [PubMed]

D. R. Williams and R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385-387 (1983).
[CrossRef] [PubMed]

Wolfing, J. I.

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology (Philadelphia) 113, 1014-1019 (2006).
[CrossRef]

Xiao, M.

M. Xiao and A. Hendrickson, “Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones,” J. Comp. Neurol. 425, 545-559 (2000).
[CrossRef] [PubMed]

Xue, B.

Yellott, J. I.

J. I. Yellott, “Spectral consequences of photoreceptor sampling in the rhesus retina,” Science 221, 382-385 (1983).
[CrossRef] [PubMed]

J. I. Yellott, “Spectral-analysis of spatial sampling by photoreceptors--topological disorder prevents aliasing,” Vision Res. 22, 1205-1210 (1982).
[CrossRef] [PubMed]

Young, D.

D. Young, C. A. Glasby, A. J. Gray, and N. J. Martin, “Towards automatic cell identification in DIC microscopy,” J. Microsc. 192, 186-193 (1998).
[CrossRef] [PubMed]

Yuodelis, C.

C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847-855 (1986).
[CrossRef] [PubMed]

Zawadski, R. J.

Zhang, Y.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283-3291 (2007).
[CrossRef]

Am. J. Anat. (2)

W. Krebs and I. P. Krebs, “Quantitative morphology of the central fovea in the primate retina,” Am. J. Anat. 184, 225-236 (1989).
[CrossRef] [PubMed]

B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, “The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones,” Am. J. Anat. 159, 125-146 (1980).
[CrossRef] [PubMed]

Eye (1)

P. K. Ahnelt, “The photoreceptor mosaic,” Eye 12, 531-540 (1998).
[CrossRef] [PubMed]

IEEE Trans. Image Process. (1)

L. Vincent, “Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms,” IEEE Trans. Image Process. 16, 176-201 (1993).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (1)

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283-3291 (2007).
[CrossRef]

J. Am. Stat. Assoc. (1)

W. S. Cleveland, “Robust locally weighted regression and smoothing scatter plots,” J. Am. Stat. Assoc. 74, 829-836 (1979).
[CrossRef]

J. Comp. Neurol. (4)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

O. Packer, A. E. Hendrickson, and C. A. Curcio, “Photoreceptor topography of the retina in the adult pigtail macaque (macaca nemestrina),” J. Comp. Neurol. 288, 165-183 (1989).
[CrossRef] [PubMed]

M. Xiao and A. Hendrickson, “Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones,” J. Comp. Neurol. 425, 545-559 (2000).
[CrossRef] [PubMed]

K. Bumsted and A. Hendrickson, “Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea,” J. Comp. Neurol. 403, 502-516 (1999).
[CrossRef] [PubMed]

J. Comput. Phys. (1)

W. Brostow, J. P. Dussaults, and B. L. Fox, “Construction of Voronoi polyhedra,” J. Comput. Phys. 29, 81-92 (1978).
[CrossRef]

J. Math. Imaging Vision (1)

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Math. Imaging Vision 2, 404-412 (2002).

J. Microsc. (2)

E. B. van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference microscope,” J. Microsc. 188, 149-157 (1997).
[CrossRef]

D. Young, C. A. Glasby, A. J. Gray, and N. J. Martin, “Towards automatic cell identification in DIC microscopy,” J. Microsc. 192, 186-193 (1998).
[CrossRef] [PubMed]

J. Neurosci. (1)

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosiac,” J. Neurosci. 25, 9669-9679 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (6)

Microsc. Res. Tech. (1)

B. Heise, A. Sonnleitner, and E. P. Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Tech. 66, 312-320 (2005).
[CrossRef] [PubMed]

Nature (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520-522 (1999).
[CrossRef] [PubMed]

Ophthalmology (Philadelphia) (1)

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology (Philadelphia) 113, 1014-1019 (2006).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
[CrossRef] [PubMed]

Prog. Retin Eye Res. (1)

P. K. Ahnelt and H. Kolb, “The mammalian photoreceptor mosaic - adaptive design,” Prog. Retin Eye Res. 19, 711-777 (2000).
[CrossRef] [PubMed]

Science (4)

J. I. Yellott, “Spectral consequences of photoreceptor sampling in the rhesus retina,” Science 221, 382-385 (1983).
[CrossRef] [PubMed]

D. R. Williams and R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385-387 (1983).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrikson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial symmetry,” Science 236, 579-582 (1987).
[CrossRef] [PubMed]

J. E. Dowling, “Foveal receptors of the monkey retina: fine structure,” Science 147, 57-59 (1965).
[CrossRef] [PubMed]

Vision Res. (6)

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195-205 (1985).
[CrossRef] [PubMed]

J. Hirsch and R. Hylton, “Quality of the primate photoreceptor lattice and limits of spatial vision,” Vision Res. 24, 347-355 (1984).
[CrossRef] [PubMed]

J. Hirsch and C. A. Curcio, “The spatial resolution capacity of human foveal retina,” Vision Res. 29, 1095-1101 (1989).
[CrossRef] [PubMed]

C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847-855 (1986).
[CrossRef] [PubMed]

J. I. Yellott, “Spectral-analysis of spatial sampling by photoreceptors--topological disorder prevents aliasing,” Vision Res. 22, 1205-1210 (1982).
[CrossRef] [PubMed]

E. E. Cornish, A. E. Hendrickson, and J. M. Provis, “Distribution of short-wavelength-sensitive cones in human fetal and postnatal retina: early development of spatial order and density profiles,” Vision Res. 44, 2019-2026 (2004).
[CrossRef] [PubMed]

Visual Neurosci. (2)

D. Pum, P. K. Ahnelt, and M. Grasl, “Iso-orientation areas in the foveal cone mosaic,” Visual Neurosci. 5, 511-523 (1990).
[CrossRef]

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: Variation with eccentricity and evidence for local anisotropy,” Visual Neurosci. 9, 169-180 (1992).
[CrossRef]

Other (3)

S. L. Polyak, The Retina (University of Chicago Press, 1941).

D. B. Murphy, Fundamentals of Light Microscopy and Digital Imaging (Wiley, 2001).

J. E. Cook, “Spatial regularity among retinal neurons,” in The Visual Neurosciences, L.M.Chalupa and J.S.Warner eds., A Bradford Book (Massachusetts Institute of Technology, 2004), pp. 485-495.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

DIC image of the foveal region of a human retina. (a) Original image with a scale bar representing 10 μ m and (b) image after background removal. The image is from a 30-yr-old female, corneal transplant donor, 5 hrs post mortem, flattened whole mount, mounted under coverslip, embedded in 90% glycerol. The image was obtained using a Photometrix NU-200 digital camera attached to a NIKON Eclipse 600 microscope with a 20 × Plan Fluor lens focused at the level of cone inner segments. Foveal slope and noise were partially compensated, producing a best-focus image extracted from a 3 × z-series ( 2 μ m step) using the Stack Focuser plug-in for ImageJ (Wayne Rasband; NIH Bethesda, MD, USA; http://rsb.info.nih.gov./ij/).

Fig. 2
Fig. 2

Region of the image shown in Fig. 1 around one cone. (a) Original image, I, and (b) the extended maxima, M h ( J ) . (c) The approximate cone center a i , ( + ) , the radial lines and the initial estimate of the cone boundary (small white circles). (d) The smoothed cone boundary and the centroid (white dot).

Fig. 3
Fig. 3

Boundary marker radii r b , before ( × ) and after ( ) smoothing, versus angle φ b .

Fig. 4
Fig. 4

Estimated cone boundaries, and the manually (small black points) and automatically (larger white points) determined cone centers for (a) region 1 and (b) region 2 of Fig. 1.

Fig. 5
Fig. 5

(a) Second DIC image of a 40 × 27 μ m section of the human fovea with a scale bar representing 10 μ m . The image is labeled by anti-opsin antibody for identification of the minor subpopulation of short-wavelength-sensitive cone outer segments. (b) The estimated cone boundaries and the manually (small black points) and automatically (larger white points) determined cone centers.

Fig. 6
Fig. 6

Histogram of derived cone diameters for Fig. 1.

Fig. 7
Fig. 7

(a) Distribution of cone diameters for Fig. 1. The white arrow indicates the foveal center. (b) The mean cone diameter (solid curve, left vertical axis) and cone density (dashed curve, right vertical axis) versus distance from the foveal center.

Fig. 8
Fig. 8

Regularity ratio versus distance from the foveal center.

Fig. 9
Fig. 9

Spatial autocorrelation calculated from the cone positions for Fig. 1. (a) Determined directly from the image, (b) calculated after rescaling the intercone distances, and (c) calculated after rescaling and reorienting as described in the text.

Fig. 10
Fig. 10

Domain structure of the retinal mosaic. White lines indicate ordered domains, and black lines indicate amorphous regions as described in the text. The white circle denotes the foveal center. The bar shows 10 μ m .

Fig. 11
Fig. 11

Histogram of the proportion of the area (number of cones) of the image in domains of different size ranges.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρ i = ( 1 n i ) j = 1 n i m i m j ,
A R = ( 1 10 ) π ( ρ ¯ R 2 ) 2 .
Δ x ̃ i , j = 2 ρ ¯ x i x j ( ρ i + ρ j ) ,
θ i = 1 6 ( j = 1 6 ϕ j 5 π ) ,

Metrics