Abstract

We present the scheme of a beam separator for ultrashort high-order harmonic radiation below 10nm. The system consists of a collimating mirror and two plane grazing-incidence gratings in compensated configuration. The first grating acts as the beam separator: it diffracts the extreme ultraviolet (XUV) light into the first order while reflecting the fundamental laser beam into the zero order. The diffracted light goes to a second grating that compensates both for the spectral dispersion and for the temporal broadening of the XUV ultrashort pulse caused by the diffraction at the first grating. The system can be designed for any wavelength in the 340nm region. Since the gratings are operated at extreme grazing incidence, the area of the optical surface illuminated by the fundamental laser pulse is large, and therefore there is no risk of damage of the optical surfaces. The effects on the phase of the ultrashort pulse for narrowband applications are discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Jaegle, Coherent Sources of XUV Radiation (Springer, 2006).
  2. E. J. Takahashi, Y. Nabekawa, H. Mashiko, H. Hasegawa, A. Suda, and K. Midorikawa, “Generation of strong optical field in soft x-ray region by using high-order harmonics,” IEEE J. Sel. Top. Quantum Electron. 10, 1315-1328 (2004).
    [CrossRef]
  3. E. Takahashi, Y. Nabekawa, T. Otsuka, M. Obara, and K. Midorikawa, “Generation of highly coherent submicrojoule soft x rays by high-order harmonics,” Phys. Rev. A 66, 021802 (2002).
    [CrossRef]
  4. J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carre, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66, 021801 (2002).
    [CrossRef]
  5. E. Takahashi, Y. Nabekawa, and K. Midorikawa, “Generation of 10-μJ coherent extreme-ultraviolet light by use of high-order harmonics,” Opt. Lett. 27, 1920-1922 (2002).
    [CrossRef]
  6. E. J. Takahashi, Y. Nabekawa, and K. Midorikawa, “Low-divergence coherent soft x-ray source at 13nm by high-order harmonics,” Appl. Phys. Lett. 84, 4-6 (2004).
    [CrossRef]
  7. H. Mashiko, A. Suda, and K. Midorikawa, “Focusing coherent soft x-ray radiation to a micrometer spot size with an intensity of 1014W/cm2,” Opt. Lett. 29, 1927-1929 (2004).
    [CrossRef] [PubMed]
  8. H. Mashiko, A. Suda, and Katsumi Midorikawa, “Focusing multiple high-order harmonics in the extreme-ultraviolet and soft-x-ray regions by a platinum-coated ellipsoidal mirror,” Appl. Opt. 45, 573-577 (2006).
    [CrossRef] [PubMed]
  9. F. R. Powell, P. W. Vedder, J. F. Lindblom, and S. F. Powell, “Thin film filter performance for extreme ultraviolet and x-ray applications,” Opt. Eng. (Bellingham) 29, 614-624 (1990).
    [CrossRef]
  10. J. Peatross, J. L. Chaloupka, and D. D. Meyerhofer, “High-order harmonic generation with an annular laser beam,” Opt. Lett. 19, 942-944 (1994).
    [CrossRef] [PubMed]
  11. R. W. Falcone and J. Bokor, “Dichroic beam splitter for extreme-ultraviolet and visible radiation,” Opt. Lett. 8, 21-23 (1983).
    [CrossRef] [PubMed]
  12. “X-ray interactions with matter,” http://henke.lbl.gov/optical_constants/.
  13. E. J. Takahashi, H. Hasegawa, Y. Nabekawa, and K. Midorikawa, “High-throughput, high-damage-threshold broadband beam splitter for high-order harmonics in the extreme-ultraviolet region,” Opt. Lett. 29, 507-509 (2004).
    [CrossRef] [PubMed]
  14. Y. Nagata, Y. Nabekawa, and K. Midorikawa, “Development of high-throughput, high-damage-threshold beam separator for 13nm high-order harmonics,” Opt. Lett. 31, 1316-1318 (2006).
    [CrossRef] [PubMed]
  15. L. Poletto, P. Azzolin, and G. Tondello, “Beam-splitting and recombining of free-electron-laser extreme-ultraviolet radiation,” Appl. Phys. B: Lasers Opt. 78, 1009-1011 (2004).
    [CrossRef]
  16. P. Villoresi, “Compensation of optical path lengths in extreme-ultraviolet and soft-x-ray monochromators for ultrafast pulses,” Appl. Opt. 38, 6040-6049 (1999).
    [CrossRef]
  17. W. Cash, “Echelle spectrographs at grazing incidence,” Appl. Opt. 21, 710-717 (1982).
    [CrossRef] [PubMed]
  18. M. Nevière, in Electromagnetic Theory of Gratings, R.Petit ed. (Springer-Verlag, 1980), Chap. IV.
  19. W. Cash and R. Kohnert, “Very high x-ray efficiency from a blazed grating,” Appl. Opt. 21, 17-18 (1982).
    [CrossRef] [PubMed]
  20. J. F. Seely, L. I. Goray, B. Kjornrattanawanich, J. M. Laming, G. E. Holland, K. A. Flanagan, R. K. Heilmann, C.-H. Chang, M. L. Schattenburg, and A. P. Rasmussen, “Efficiency of a grazing-incidence off-plane grating in the soft-x-ray region,” Appl. Opt. 45, 1680-1687 (2006).
    [CrossRef] [PubMed]
  21. L. Poletto, S. Bonora, M. Pascolini, F. Borgatti, B. Doyle, A. Giglia, N. Mahne, M. Pedio, and S. Nannarone, “Efficiency of gratings in the conical diffraction mounting for an EUV time-compensated monochromator,” Proc. SPIE 5534, 144-153 (2004).
    [CrossRef]
  22. M. Pascolini, S. Bonora, A. Giglia, N. Mahne, S. Nannarone, and L. Poletto, “Gratings in the conical diffraction mounting for an EUV time-delay compensated monochromator,” Appl. Opt. 45, 3253-3562 (2006).
    [CrossRef] [PubMed]
  23. C. Montcalm, P. A. Kearney, J. M. Slaughter, B. T. Sullivan, M. Chaker, and C. M. Falco, “Survey of Ti-, B- and Y-based soft-x-ray/extreme-ultraviolet multilayer mirrors for the 2 to 13nm wavelength region,” Appl. Opt. 35, 5134-5147 (1996).
    [CrossRef] [PubMed]
  24. H. Ch. Mertins, F. Schaefers, H. Grimmer, D. Clemens, P. Boeni, and M. Horisberger, “WyC, WyTi, NiyTi, and NiyV multilayers for the soft-x-ray range: experimental investigation with synchrotron radiation,” Appl. Opt. 37, 1873-1882 (1998).
    [CrossRef]
  25. B. Sae-Lao and C. Montcalm, “Molybdenum-strontium multilayer mirrors for the 8-12-nm extreme-ultraviolet wavelength region,” Opt. Lett. 26, 468-471 (2001).
    [CrossRef]
  26. “X-ray multilayer results,” http://henke.lbl.gov/multilayer/survey.html.
  27. W. Ackermann, “Operation of a free electron laser in the wavelength range from the extreme ultraviolet to the water window,” Nat. Photonics 1, 336-342 (2007).
    [CrossRef]
  28. L. Poletto and P. Villoresi, “Time-compensated monochromator in the off-plane mount for extreme-ultraviolet ultrashort pulses,” Appl. Opt. 45, 8577-8585 (2006).
    [CrossRef] [PubMed]
  29. L. Poletto, F. Frassetto, and P. Villoresi, “Attosecond pulse compression in the extreme ultraviolet region by conical diffraction,” presented at the 2007 Conference on Lasers and Electro-Optics, Baltimore, Maryland, USA, May 6-11, 2007.
  30. L. Poletto, P. Villoresi, E. Benedetti, F. Ferrari, S. Stagira, G. Sansone, and M. Nisoli, “Intense femtosecond extreme ultraviolet pulses by using a time-delay compensated monochromator,” Opt. Lett. 32, 2897-2899 (2007).
    [CrossRef] [PubMed]

2007 (2)

2006 (5)

2004 (6)

L. Poletto, S. Bonora, M. Pascolini, F. Borgatti, B. Doyle, A. Giglia, N. Mahne, M. Pedio, and S. Nannarone, “Efficiency of gratings in the conical diffraction mounting for an EUV time-compensated monochromator,” Proc. SPIE 5534, 144-153 (2004).
[CrossRef]

L. Poletto, P. Azzolin, and G. Tondello, “Beam-splitting and recombining of free-electron-laser extreme-ultraviolet radiation,” Appl. Phys. B: Lasers Opt. 78, 1009-1011 (2004).
[CrossRef]

E. J. Takahashi, Y. Nabekawa, and K. Midorikawa, “Low-divergence coherent soft x-ray source at 13nm by high-order harmonics,” Appl. Phys. Lett. 84, 4-6 (2004).
[CrossRef]

H. Mashiko, A. Suda, and K. Midorikawa, “Focusing coherent soft x-ray radiation to a micrometer spot size with an intensity of 1014W/cm2,” Opt. Lett. 29, 1927-1929 (2004).
[CrossRef] [PubMed]

E. J. Takahashi, Y. Nabekawa, H. Mashiko, H. Hasegawa, A. Suda, and K. Midorikawa, “Generation of strong optical field in soft x-ray region by using high-order harmonics,” IEEE J. Sel. Top. Quantum Electron. 10, 1315-1328 (2004).
[CrossRef]

E. J. Takahashi, H. Hasegawa, Y. Nabekawa, and K. Midorikawa, “High-throughput, high-damage-threshold broadband beam splitter for high-order harmonics in the extreme-ultraviolet region,” Opt. Lett. 29, 507-509 (2004).
[CrossRef] [PubMed]

2002 (3)

E. Takahashi, Y. Nabekawa, T. Otsuka, M. Obara, and K. Midorikawa, “Generation of highly coherent submicrojoule soft x rays by high-order harmonics,” Phys. Rev. A 66, 021802 (2002).
[CrossRef]

J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carre, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66, 021801 (2002).
[CrossRef]

E. Takahashi, Y. Nabekawa, and K. Midorikawa, “Generation of 10-μJ coherent extreme-ultraviolet light by use of high-order harmonics,” Opt. Lett. 27, 1920-1922 (2002).
[CrossRef]

2001 (1)

1999 (1)

1998 (1)

1996 (1)

1994 (1)

1990 (1)

F. R. Powell, P. W. Vedder, J. F. Lindblom, and S. F. Powell, “Thin film filter performance for extreme ultraviolet and x-ray applications,” Opt. Eng. (Bellingham) 29, 614-624 (1990).
[CrossRef]

1983 (1)

1982 (2)

Ackermann, W.

W. Ackermann, “Operation of a free electron laser in the wavelength range from the extreme ultraviolet to the water window,” Nat. Photonics 1, 336-342 (2007).
[CrossRef]

Agostini, P.

J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carre, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66, 021801 (2002).
[CrossRef]

Azzolin, P.

L. Poletto, P. Azzolin, and G. Tondello, “Beam-splitting and recombining of free-electron-laser extreme-ultraviolet radiation,” Appl. Phys. B: Lasers Opt. 78, 1009-1011 (2004).
[CrossRef]

Benedetti, E.

Boeni, P.

Bokor, J.

Bonora, S.

M. Pascolini, S. Bonora, A. Giglia, N. Mahne, S. Nannarone, and L. Poletto, “Gratings in the conical diffraction mounting for an EUV time-delay compensated monochromator,” Appl. Opt. 45, 3253-3562 (2006).
[CrossRef] [PubMed]

L. Poletto, S. Bonora, M. Pascolini, F. Borgatti, B. Doyle, A. Giglia, N. Mahne, M. Pedio, and S. Nannarone, “Efficiency of gratings in the conical diffraction mounting for an EUV time-compensated monochromator,” Proc. SPIE 5534, 144-153 (2004).
[CrossRef]

Borgatti, F.

L. Poletto, S. Bonora, M. Pascolini, F. Borgatti, B. Doyle, A. Giglia, N. Mahne, M. Pedio, and S. Nannarone, “Efficiency of gratings in the conical diffraction mounting for an EUV time-compensated monochromator,” Proc. SPIE 5534, 144-153 (2004).
[CrossRef]

Breger, P.

J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carre, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66, 021801 (2002).
[CrossRef]

Carre, B.

J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carre, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66, 021801 (2002).
[CrossRef]

Cash, W.

Ch. Mertins, H.

Chaker, M.

Chaloupka, J. L.

Chang, C.-H.

Clemens, D.

Doyle, B.

L. Poletto, S. Bonora, M. Pascolini, F. Borgatti, B. Doyle, A. Giglia, N. Mahne, M. Pedio, and S. Nannarone, “Efficiency of gratings in the conical diffraction mounting for an EUV time-compensated monochromator,” Proc. SPIE 5534, 144-153 (2004).
[CrossRef]

Falco, C. M.

Falcone, R. W.

Ferrari, F.

Flanagan, K. A.

Frassetto, F.

L. Poletto, F. Frassetto, and P. Villoresi, “Attosecond pulse compression in the extreme ultraviolet region by conical diffraction,” presented at the 2007 Conference on Lasers and Electro-Optics, Baltimore, Maryland, USA, May 6-11, 2007.

Giglia, A.

M. Pascolini, S. Bonora, A. Giglia, N. Mahne, S. Nannarone, and L. Poletto, “Gratings in the conical diffraction mounting for an EUV time-delay compensated monochromator,” Appl. Opt. 45, 3253-3562 (2006).
[CrossRef] [PubMed]

L. Poletto, S. Bonora, M. Pascolini, F. Borgatti, B. Doyle, A. Giglia, N. Mahne, M. Pedio, and S. Nannarone, “Efficiency of gratings in the conical diffraction mounting for an EUV time-compensated monochromator,” Proc. SPIE 5534, 144-153 (2004).
[CrossRef]

Goray, L. I.

Grimmer, H.

Hasegawa, H.

E. J. Takahashi, H. Hasegawa, Y. Nabekawa, and K. Midorikawa, “High-throughput, high-damage-threshold broadband beam splitter for high-order harmonics in the extreme-ultraviolet region,” Opt. Lett. 29, 507-509 (2004).
[CrossRef] [PubMed]

E. J. Takahashi, Y. Nabekawa, H. Mashiko, H. Hasegawa, A. Suda, and K. Midorikawa, “Generation of strong optical field in soft x-ray region by using high-order harmonics,” IEEE J. Sel. Top. Quantum Electron. 10, 1315-1328 (2004).
[CrossRef]

Heilmann, R. K.

Hergott, J.-F.

J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carre, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66, 021801 (2002).
[CrossRef]

Holland, G. E.

Horisberger, M.

Hubert, C.

J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carre, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66, 021801 (2002).
[CrossRef]

Jaegle, P.

P. Jaegle, Coherent Sources of XUV Radiation (Springer, 2006).

Jean, E.

J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carre, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66, 021801 (2002).
[CrossRef]

Kearney, P. A.

Kjornrattanawanich, B.

Kohnert, R.

Kovacev, M.

J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carre, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66, 021801 (2002).
[CrossRef]

Laming, J. M.

Lindblom, J. F.

F. R. Powell, P. W. Vedder, J. F. Lindblom, and S. F. Powell, “Thin film filter performance for extreme ultraviolet and x-ray applications,” Opt. Eng. (Bellingham) 29, 614-624 (1990).
[CrossRef]

Mahne, N.

M. Pascolini, S. Bonora, A. Giglia, N. Mahne, S. Nannarone, and L. Poletto, “Gratings in the conical diffraction mounting for an EUV time-delay compensated monochromator,” Appl. Opt. 45, 3253-3562 (2006).
[CrossRef] [PubMed]

L. Poletto, S. Bonora, M. Pascolini, F. Borgatti, B. Doyle, A. Giglia, N. Mahne, M. Pedio, and S. Nannarone, “Efficiency of gratings in the conical diffraction mounting for an EUV time-compensated monochromator,” Proc. SPIE 5534, 144-153 (2004).
[CrossRef]

Mairesse, Y.

J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carre, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66, 021801 (2002).
[CrossRef]

Mashiko, H.

Merdji, H.

J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carre, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66, 021801 (2002).
[CrossRef]

Meyerhofer, D. D.

Midorikawa, K.

Y. Nagata, Y. Nabekawa, and K. Midorikawa, “Development of high-throughput, high-damage-threshold beam separator for 13nm high-order harmonics,” Opt. Lett. 31, 1316-1318 (2006).
[CrossRef] [PubMed]

E. J. Takahashi, H. Hasegawa, Y. Nabekawa, and K. Midorikawa, “High-throughput, high-damage-threshold broadband beam splitter for high-order harmonics in the extreme-ultraviolet region,” Opt. Lett. 29, 507-509 (2004).
[CrossRef] [PubMed]

E. J. Takahashi, Y. Nabekawa, H. Mashiko, H. Hasegawa, A. Suda, and K. Midorikawa, “Generation of strong optical field in soft x-ray region by using high-order harmonics,” IEEE J. Sel. Top. Quantum Electron. 10, 1315-1328 (2004).
[CrossRef]

E. J. Takahashi, Y. Nabekawa, and K. Midorikawa, “Low-divergence coherent soft x-ray source at 13nm by high-order harmonics,” Appl. Phys. Lett. 84, 4-6 (2004).
[CrossRef]

H. Mashiko, A. Suda, and K. Midorikawa, “Focusing coherent soft x-ray radiation to a micrometer spot size with an intensity of 1014W/cm2,” Opt. Lett. 29, 1927-1929 (2004).
[CrossRef] [PubMed]

E. Takahashi, Y. Nabekawa, and K. Midorikawa, “Generation of 10-μJ coherent extreme-ultraviolet light by use of high-order harmonics,” Opt. Lett. 27, 1920-1922 (2002).
[CrossRef]

E. Takahashi, Y. Nabekawa, T. Otsuka, M. Obara, and K. Midorikawa, “Generation of highly coherent submicrojoule soft x rays by high-order harmonics,” Phys. Rev. A 66, 021802 (2002).
[CrossRef]

Midorikawa, Katsumi

Montcalm, C.

Nabekawa, Y.

Y. Nagata, Y. Nabekawa, and K. Midorikawa, “Development of high-throughput, high-damage-threshold beam separator for 13nm high-order harmonics,” Opt. Lett. 31, 1316-1318 (2006).
[CrossRef] [PubMed]

E. J. Takahashi, H. Hasegawa, Y. Nabekawa, and K. Midorikawa, “High-throughput, high-damage-threshold broadband beam splitter for high-order harmonics in the extreme-ultraviolet region,” Opt. Lett. 29, 507-509 (2004).
[CrossRef] [PubMed]

E. J. Takahashi, Y. Nabekawa, H. Mashiko, H. Hasegawa, A. Suda, and K. Midorikawa, “Generation of strong optical field in soft x-ray region by using high-order harmonics,” IEEE J. Sel. Top. Quantum Electron. 10, 1315-1328 (2004).
[CrossRef]

E. J. Takahashi, Y. Nabekawa, and K. Midorikawa, “Low-divergence coherent soft x-ray source at 13nm by high-order harmonics,” Appl. Phys. Lett. 84, 4-6 (2004).
[CrossRef]

E. Takahashi, Y. Nabekawa, and K. Midorikawa, “Generation of 10-μJ coherent extreme-ultraviolet light by use of high-order harmonics,” Opt. Lett. 27, 1920-1922 (2002).
[CrossRef]

E. Takahashi, Y. Nabekawa, T. Otsuka, M. Obara, and K. Midorikawa, “Generation of highly coherent submicrojoule soft x rays by high-order harmonics,” Phys. Rev. A 66, 021802 (2002).
[CrossRef]

Nagata, Y.

Nannarone, S.

M. Pascolini, S. Bonora, A. Giglia, N. Mahne, S. Nannarone, and L. Poletto, “Gratings in the conical diffraction mounting for an EUV time-delay compensated monochromator,” Appl. Opt. 45, 3253-3562 (2006).
[CrossRef] [PubMed]

L. Poletto, S. Bonora, M. Pascolini, F. Borgatti, B. Doyle, A. Giglia, N. Mahne, M. Pedio, and S. Nannarone, “Efficiency of gratings in the conical diffraction mounting for an EUV time-compensated monochromator,” Proc. SPIE 5534, 144-153 (2004).
[CrossRef]

Nevière, M.

M. Nevière, in Electromagnetic Theory of Gratings, R.Petit ed. (Springer-Verlag, 1980), Chap. IV.

Nisoli, M.

Obara, M.

E. Takahashi, Y. Nabekawa, T. Otsuka, M. Obara, and K. Midorikawa, “Generation of highly coherent submicrojoule soft x rays by high-order harmonics,” Phys. Rev. A 66, 021802 (2002).
[CrossRef]

Otsuka, T.

E. Takahashi, Y. Nabekawa, T. Otsuka, M. Obara, and K. Midorikawa, “Generation of highly coherent submicrojoule soft x rays by high-order harmonics,” Phys. Rev. A 66, 021802 (2002).
[CrossRef]

Pascolini, M.

M. Pascolini, S. Bonora, A. Giglia, N. Mahne, S. Nannarone, and L. Poletto, “Gratings in the conical diffraction mounting for an EUV time-delay compensated monochromator,” Appl. Opt. 45, 3253-3562 (2006).
[CrossRef] [PubMed]

L. Poletto, S. Bonora, M. Pascolini, F. Borgatti, B. Doyle, A. Giglia, N. Mahne, M. Pedio, and S. Nannarone, “Efficiency of gratings in the conical diffraction mounting for an EUV time-compensated monochromator,” Proc. SPIE 5534, 144-153 (2004).
[CrossRef]

Peatross, J.

Pedio, M.

L. Poletto, S. Bonora, M. Pascolini, F. Borgatti, B. Doyle, A. Giglia, N. Mahne, M. Pedio, and S. Nannarone, “Efficiency of gratings in the conical diffraction mounting for an EUV time-compensated monochromator,” Proc. SPIE 5534, 144-153 (2004).
[CrossRef]

Poletto, L.

L. Poletto, P. Villoresi, E. Benedetti, F. Ferrari, S. Stagira, G. Sansone, and M. Nisoli, “Intense femtosecond extreme ultraviolet pulses by using a time-delay compensated monochromator,” Opt. Lett. 32, 2897-2899 (2007).
[CrossRef] [PubMed]

L. Poletto and P. Villoresi, “Time-compensated monochromator in the off-plane mount for extreme-ultraviolet ultrashort pulses,” Appl. Opt. 45, 8577-8585 (2006).
[CrossRef] [PubMed]

M. Pascolini, S. Bonora, A. Giglia, N. Mahne, S. Nannarone, and L. Poletto, “Gratings in the conical diffraction mounting for an EUV time-delay compensated monochromator,” Appl. Opt. 45, 3253-3562 (2006).
[CrossRef] [PubMed]

L. Poletto, P. Azzolin, and G. Tondello, “Beam-splitting and recombining of free-electron-laser extreme-ultraviolet radiation,” Appl. Phys. B: Lasers Opt. 78, 1009-1011 (2004).
[CrossRef]

L. Poletto, S. Bonora, M. Pascolini, F. Borgatti, B. Doyle, A. Giglia, N. Mahne, M. Pedio, and S. Nannarone, “Efficiency of gratings in the conical diffraction mounting for an EUV time-compensated monochromator,” Proc. SPIE 5534, 144-153 (2004).
[CrossRef]

L. Poletto, F. Frassetto, and P. Villoresi, “Attosecond pulse compression in the extreme ultraviolet region by conical diffraction,” presented at the 2007 Conference on Lasers and Electro-Optics, Baltimore, Maryland, USA, May 6-11, 2007.

Powell, F. R.

F. R. Powell, P. W. Vedder, J. F. Lindblom, and S. F. Powell, “Thin film filter performance for extreme ultraviolet and x-ray applications,” Opt. Eng. (Bellingham) 29, 614-624 (1990).
[CrossRef]

Powell, S. F.

F. R. Powell, P. W. Vedder, J. F. Lindblom, and S. F. Powell, “Thin film filter performance for extreme ultraviolet and x-ray applications,” Opt. Eng. (Bellingham) 29, 614-624 (1990).
[CrossRef]

Rasmussen, A. P.

Sae-Lao, B.

Salières, P.

J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carre, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66, 021801 (2002).
[CrossRef]

Sansone, G.

Schaefers, F.

Schattenburg, M. L.

Seely, J. F.

Slaughter, J. M.

Stagira, S.

Suda, A.

Sullivan, B. T.

Takahashi, E.

E. Takahashi, Y. Nabekawa, T. Otsuka, M. Obara, and K. Midorikawa, “Generation of highly coherent submicrojoule soft x rays by high-order harmonics,” Phys. Rev. A 66, 021802 (2002).
[CrossRef]

E. Takahashi, Y. Nabekawa, and K. Midorikawa, “Generation of 10-μJ coherent extreme-ultraviolet light by use of high-order harmonics,” Opt. Lett. 27, 1920-1922 (2002).
[CrossRef]

Takahashi, E. J.

E. J. Takahashi, Y. Nabekawa, and K. Midorikawa, “Low-divergence coherent soft x-ray source at 13nm by high-order harmonics,” Appl. Phys. Lett. 84, 4-6 (2004).
[CrossRef]

E. J. Takahashi, Y. Nabekawa, H. Mashiko, H. Hasegawa, A. Suda, and K. Midorikawa, “Generation of strong optical field in soft x-ray region by using high-order harmonics,” IEEE J. Sel. Top. Quantum Electron. 10, 1315-1328 (2004).
[CrossRef]

E. J. Takahashi, H. Hasegawa, Y. Nabekawa, and K. Midorikawa, “High-throughput, high-damage-threshold broadband beam splitter for high-order harmonics in the extreme-ultraviolet region,” Opt. Lett. 29, 507-509 (2004).
[CrossRef] [PubMed]

Tondello, G.

L. Poletto, P. Azzolin, and G. Tondello, “Beam-splitting and recombining of free-electron-laser extreme-ultraviolet radiation,” Appl. Phys. B: Lasers Opt. 78, 1009-1011 (2004).
[CrossRef]

Vedder, P. W.

F. R. Powell, P. W. Vedder, J. F. Lindblom, and S. F. Powell, “Thin film filter performance for extreme ultraviolet and x-ray applications,” Opt. Eng. (Bellingham) 29, 614-624 (1990).
[CrossRef]

Villoresi, P.

Appl. Opt. (9)

H. Mashiko, A. Suda, and Katsumi Midorikawa, “Focusing multiple high-order harmonics in the extreme-ultraviolet and soft-x-ray regions by a platinum-coated ellipsoidal mirror,” Appl. Opt. 45, 573-577 (2006).
[CrossRef] [PubMed]

P. Villoresi, “Compensation of optical path lengths in extreme-ultraviolet and soft-x-ray monochromators for ultrafast pulses,” Appl. Opt. 38, 6040-6049 (1999).
[CrossRef]

W. Cash, “Echelle spectrographs at grazing incidence,” Appl. Opt. 21, 710-717 (1982).
[CrossRef] [PubMed]

W. Cash and R. Kohnert, “Very high x-ray efficiency from a blazed grating,” Appl. Opt. 21, 17-18 (1982).
[CrossRef] [PubMed]

J. F. Seely, L. I. Goray, B. Kjornrattanawanich, J. M. Laming, G. E. Holland, K. A. Flanagan, R. K. Heilmann, C.-H. Chang, M. L. Schattenburg, and A. P. Rasmussen, “Efficiency of a grazing-incidence off-plane grating in the soft-x-ray region,” Appl. Opt. 45, 1680-1687 (2006).
[CrossRef] [PubMed]

M. Pascolini, S. Bonora, A. Giglia, N. Mahne, S. Nannarone, and L. Poletto, “Gratings in the conical diffraction mounting for an EUV time-delay compensated monochromator,” Appl. Opt. 45, 3253-3562 (2006).
[CrossRef] [PubMed]

C. Montcalm, P. A. Kearney, J. M. Slaughter, B. T. Sullivan, M. Chaker, and C. M. Falco, “Survey of Ti-, B- and Y-based soft-x-ray/extreme-ultraviolet multilayer mirrors for the 2 to 13nm wavelength region,” Appl. Opt. 35, 5134-5147 (1996).
[CrossRef] [PubMed]

H. Ch. Mertins, F. Schaefers, H. Grimmer, D. Clemens, P. Boeni, and M. Horisberger, “WyC, WyTi, NiyTi, and NiyV multilayers for the soft-x-ray range: experimental investigation with synchrotron radiation,” Appl. Opt. 37, 1873-1882 (1998).
[CrossRef]

L. Poletto and P. Villoresi, “Time-compensated monochromator in the off-plane mount for extreme-ultraviolet ultrashort pulses,” Appl. Opt. 45, 8577-8585 (2006).
[CrossRef] [PubMed]

Appl. Phys. B: Lasers Opt. (1)

L. Poletto, P. Azzolin, and G. Tondello, “Beam-splitting and recombining of free-electron-laser extreme-ultraviolet radiation,” Appl. Phys. B: Lasers Opt. 78, 1009-1011 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

E. J. Takahashi, Y. Nabekawa, and K. Midorikawa, “Low-divergence coherent soft x-ray source at 13nm by high-order harmonics,” Appl. Phys. Lett. 84, 4-6 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

E. J. Takahashi, Y. Nabekawa, H. Mashiko, H. Hasegawa, A. Suda, and K. Midorikawa, “Generation of strong optical field in soft x-ray region by using high-order harmonics,” IEEE J. Sel. Top. Quantum Electron. 10, 1315-1328 (2004).
[CrossRef]

Nat. Photonics (1)

W. Ackermann, “Operation of a free electron laser in the wavelength range from the extreme ultraviolet to the water window,” Nat. Photonics 1, 336-342 (2007).
[CrossRef]

Opt. Eng. (Bellingham) (1)

F. R. Powell, P. W. Vedder, J. F. Lindblom, and S. F. Powell, “Thin film filter performance for extreme ultraviolet and x-ray applications,” Opt. Eng. (Bellingham) 29, 614-624 (1990).
[CrossRef]

Opt. Lett. (8)

J. Peatross, J. L. Chaloupka, and D. D. Meyerhofer, “High-order harmonic generation with an annular laser beam,” Opt. Lett. 19, 942-944 (1994).
[CrossRef] [PubMed]

R. W. Falcone and J. Bokor, “Dichroic beam splitter for extreme-ultraviolet and visible radiation,” Opt. Lett. 8, 21-23 (1983).
[CrossRef] [PubMed]

E. Takahashi, Y. Nabekawa, and K. Midorikawa, “Generation of 10-μJ coherent extreme-ultraviolet light by use of high-order harmonics,” Opt. Lett. 27, 1920-1922 (2002).
[CrossRef]

H. Mashiko, A. Suda, and K. Midorikawa, “Focusing coherent soft x-ray radiation to a micrometer spot size with an intensity of 1014W/cm2,” Opt. Lett. 29, 1927-1929 (2004).
[CrossRef] [PubMed]

E. J. Takahashi, H. Hasegawa, Y. Nabekawa, and K. Midorikawa, “High-throughput, high-damage-threshold broadband beam splitter for high-order harmonics in the extreme-ultraviolet region,” Opt. Lett. 29, 507-509 (2004).
[CrossRef] [PubMed]

Y. Nagata, Y. Nabekawa, and K. Midorikawa, “Development of high-throughput, high-damage-threshold beam separator for 13nm high-order harmonics,” Opt. Lett. 31, 1316-1318 (2006).
[CrossRef] [PubMed]

B. Sae-Lao and C. Montcalm, “Molybdenum-strontium multilayer mirrors for the 8-12-nm extreme-ultraviolet wavelength region,” Opt. Lett. 26, 468-471 (2001).
[CrossRef]

L. Poletto, P. Villoresi, E. Benedetti, F. Ferrari, S. Stagira, G. Sansone, and M. Nisoli, “Intense femtosecond extreme ultraviolet pulses by using a time-delay compensated monochromator,” Opt. Lett. 32, 2897-2899 (2007).
[CrossRef] [PubMed]

Phys. Rev. A (2)

E. Takahashi, Y. Nabekawa, T. Otsuka, M. Obara, and K. Midorikawa, “Generation of highly coherent submicrojoule soft x rays by high-order harmonics,” Phys. Rev. A 66, 021802 (2002).
[CrossRef]

J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carre, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66, 021801 (2002).
[CrossRef]

Proc. SPIE (1)

L. Poletto, S. Bonora, M. Pascolini, F. Borgatti, B. Doyle, A. Giglia, N. Mahne, M. Pedio, and S. Nannarone, “Efficiency of gratings in the conical diffraction mounting for an EUV time-compensated monochromator,” Proc. SPIE 5534, 144-153 (2004).
[CrossRef]

Other (5)

M. Nevière, in Electromagnetic Theory of Gratings, R.Petit ed. (Springer-Verlag, 1980), Chap. IV.

P. Jaegle, Coherent Sources of XUV Radiation (Springer, 2006).

“X-ray interactions with matter,” http://henke.lbl.gov/optical_constants/.

“X-ray multilayer results,” http://henke.lbl.gov/multilayer/survey.html.

L. Poletto, F. Frassetto, and P. Villoresi, “Attosecond pulse compression in the extreme ultraviolet region by conical diffraction,” presented at the 2007 Conference on Lasers and Electro-Optics, Baltimore, Maryland, USA, May 6-11, 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Beam separator with gratings in the classical diffraction mount: (a) schematic view of the system consisting of the collimating mirror M1 and the two plane gratings, (b) details of the grating section.

Fig. 2
Fig. 2

Geometry of the off-plane mount.

Fig. 3
Fig. 3

Beam separator with gratings in the off-plane mount: (a) schematic view of the system, (b), (c) details of the grating section.

Fig. 4
Fig. 4

Group delay of a beam separator, with gratings in the classical diffraction mount, for a broadband pulse in the 5 10 nm region. The design parameters are D = 15 mm and α = 87 ° . (a) 250 gr mm gratings, q = 750 mm ; (b) 500 gr mm gratings, q = 420 mm .

Fig. 5
Fig. 5

Group delay of a beam separator, with gratings in the off-plane mount, for a broadband pulse in the 5 10 nm region. The design parameters are D = 15 mm and γ = 4 ° . (a) 2000 gr mm gratings, q = 1500 mm ; (b) 2500 gr mm gratings, q = 1200 mm .

Fig. 6
Fig. 6

Tunable beam separator: (a) gratings in the classical diffraction mount, (b) gratings in the off-plane mount.

Fig. 7
Fig. 7

Group delay of a tunable beam separator with gratings in the classical diffraction mount. The design parameters are D = 15 mm and K = 172 ° . The group-delay curve is fitted with a linear polynomial in ω, and the corresponding GDD is constant. (a1)–(a3) 250 gr mm gratings, q = 840 mm ; (b1)–(b3) 500 gr mm gratings, q = 420 mm ; (c1)–(c3) 750 gr mm gratings, q = 280 mm .

Fig. 8
Fig. 8

Group delay of a tunable beam separator with gratings in the off-plane mount. The design parameters are D = 15 mm and γ = 4 ° . The group-delay curve is fitted with a linear polynomial in ω, and the corresponding GDD is constant. (a1)–(a3) 1500 gr mm gratings, q = 2000 mm ; (b1)–(b3) 2000 gr mm gratings, q = 1500 mm ; (c1)–(c3) 2500 gr mm gratings, q = 1200 mm .

Fig. 9
Fig. 9

Pulse broadening, due to the nonzero GDD, in the case of the off-plane configuration. The input pulse spectrum is assumed to be transform limited with FWHM bandwidth Δ λ FWHM λ = 1.2 % . (a) GDD = 2.9 fs 2 [see Fig. 8(a2)], pulse duration altered from 0.9 to 9 fs . (b) GDD = 4.8 fs 2 [see Fig. 8(c2)], pulse duration altered from 0.9 to 15 fs .

Tables (8)

Tables Icon

Table 1 Beam Separator with Gratings in the Classical Diffraction Mount a

Tables Icon

Table 2 Beam Separator with Gratings in the Off-Plane Mount a

Tables Icon

Table 3 Parameters of the Beam Separator Tunable in the 5 10 nm Region with Gratings in the Classical Diffraction Mount

Tables Icon

Table 4 Pulse Broadening at the Output of the Beam Separator in the Classical Diffraction Mount a

Tables Icon

Table 5 Spatial Chirp of a Tunable Beam Separator with Gratings in the Classical Diffraction Mount for a Pulse Bandwidth of 3%

Tables Icon

Table 6 Parameters of the Beam Separator Tunable in the 5 10 nm Region with Gratings in the Off-Plane Mount

Tables Icon

Table 7 Pulse Broadening at the Output of the Beam Separator in the Case of the Off-Plane Mount a

Tables Icon

Table 8 Spatial Chirp of a Tunable Beam Separator with Gratings in the Off-Plane Mount a

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

sin α sin β = m λ σ ,
δ = ( α β B ) 2 ,
D = q tan ( α β min ) q 1 + 2 m σ λ min tan 2 α 1 tan α .
G D ( ω ) ϕ ω = O P ( ω ) c ,
ω c ω min + ω max 2 = π c ( 1 λ min + 1 λ max ) ,
λ c 2 π c ω c = 2 ( 1 λ min + 1 λ max ) 1 .
O P ( λ ) = q cos β c cos β ( 1 sin α sin β ) + const. ,
O P ( λ ) = q λ c ( m σ cos β c ) 2 ( λ λ c ) + cos t .
K ω q c ( 2 π m σ ω c cos β c ) 2 .
O P ( ω ) = c K ω ( 1 ω c ω ) + cos t .
φ ( ω ) = Φ 0 + Φ 1 ( ω ω c ) + Φ 2 ( ω ω c ) 2 + Φ 3 ( ω ω c ) 3 + Φ 4 ( ω ω c ) 4 + O ( ω ω c ) 5 ,
Φ 2 = K ω 2 ω c , Φ 3 = K ω 3 ω c 2 , Φ 4 = K ω 4 ω c 3 .
S C ( λ ) = q cos α cos β c ( tan β c tan β ) .
S C ( λ ) = m σ q cos α cos 2 β c ( λ λ c ) .
sin γ ( sin α a z + sin β a z ) = m λ σ .
D m σ q λ min .
O P ( λ ) = q sin 2 γ cos α a z cos β a z ( 1 + sin α a z sin β a z ) + cos t .
O P ( λ ) = 2 m σ q sin γ sin α a z cos 2 α a z ( λ λ c ) + const.
K ω , o f f - p l a n e q c ( 2 π m σ ω c cos a a z ) 2 .
S C ( λ ) = q ( cos α a z cos β a z ) 2 cos 2 γ cos 2 β a z + sin 2 ( α a z β a z ) sin 2 γ cos 2 β a z ( cos γ 2 ( cos α a z cos β a z 1 ) + sin α a z sin ( α a z β a z ) sin 2 γ cos β a z ) 2 .
S C ( λ ) = σ q 1 cos 2 α a z λ λ c σ q λ λ c ,
α = K 2 + arcsin [ m σ λ c 2 cos ( K 2 ) ] .
α = arcsin ( m σ λ c 2 sin γ ) .

Metrics