Abstract

We developed a Monte Carlo model to calculate light absorption in human and mouse retinas. The retina was modeled as a five-layer spherical structure. The effects of melanin concentrations in the retinal pigment epithelium (RPE) and choroid layer were studied. Variations of blood content in choroid were also considered in the simulation. Our simulation results indicated that light absorption in neural retina was at least 20% higher in albino subjects than in pigmented subjects under both photobleaching and dark-adapted conditions. It can be four times higher at optical wavelengths corresponding to minimal hemoglobin absorption. The elevated absorption at neural retina was attributed to the light backscattered from the choroid and sclera layers. This simulation model may provide useful information in studying light-induced retina damage.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. K. Sardar, F. S. Salinas, J. J. Perez, and A. T. Tsin, "Optical characterization of bovine retinal tissues," J. Biomed. Opt. 9, 624-631 (2004).
    [CrossRef] [PubMed]
  2. D. J. Creel, C. G. Summers, and R. A. King, "Visual anomalies associated with albinism," Ophthalmic Physiol. Opt. 11, 193-200 (1990).
  3. R. Abadi and E. Pascal, "The recognition and management of albinism," Ophthalmic Physiol. Opt. 9, 3-15 (1989).
    [CrossRef] [PubMed]
  4. I. Russel-Eggitt, A. Kriss, and D. S. Taylor, "Albinism in childhood: a flash VEP and ERG study," Br. J. Ophthamol. 74, 136-140 (1990).
    [CrossRef]
  5. A. J. Vingrys and B. V. Bui, "Development of postreceptoral function in pigmented and albino guinea pigs," Visual Neurosci. 18, 605-613 (2001).
    [CrossRef]
  6. J. Gresh, P. W. Goletz, R. K. Crouch, and B. Rohrer, "Structure-function analysis of rods and cones in juvenile, adult, and aged C57BL/6 and Balb/c mice," Visual Neurosci. 20, 211-220 (2003).
    [CrossRef]
  7. L.-H. Wang, S. L. Jacques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef] [PubMed]
  8. G. Yao and M. A. Haidekker, "Transillumination optical tomography of tissue-engineered blood vessels: a Monte Carlo simulation," Appl. Opt. 44, 4265-4271 (2005).
    [CrossRef] [PubMed]
  9. M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
    [CrossRef] [PubMed]
  10. S. J. Preece and E. Claridge, "Monte Carlo modeling of the spectral reflectance of the human eye," Phys. Med. Biol. 47, 2863-2877 (2002).
    [CrossRef] [PubMed]
  11. B. L. Evans and S. B. Smith, "Analysis of esterification of retinoids in the retinal pigmented epithelium of the Mitfvit (vitiligo) mutant mouse," Mol. Vis 3, 11-22 (1997).
  12. C. Schmucker and F. Schaeffel, "A paraxial schematic eye model for the growing C57BL/6 mouse," Vision Res. 44, 1857-1867 (2004).
    [CrossRef] [PubMed]
  13. M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, "Light paths in retinal vessel oxymetry," IEEE Trans. Biomed. Eng. 48, 592-598 (2001).
    [CrossRef] [PubMed]
  14. M. Hammer, D. Schweitzer, E. Thamm, and A. Kolb, "Non-invasive measurement of the concentration of melanin, xanthopyll, and hemoglobin in single fundus layers in vivo by fundus reflectometry," Int. Ophthalmol. 23, 279-289 (2001).
    [CrossRef]
  15. L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
    [CrossRef]
  16. L. V. Wang and S. L. Jacques, "Source of error in calculation of optical diffuse reflectance from turbid media using diffuse theory," Comput. Methods Programs Biomed. 61, 163-170 (2000).
    [CrossRef] [PubMed]
  17. V. V. Tuchin, "Light scattering study of tissues," Phys. Usp. 40, 495-515 (1997).
    [CrossRef]
  18. J. M. Sandbach, P. E. Coscun, H. E. Grossniklaus, J. E. Kokoszka, N. J. Newman, and D. C. Wallace, "Ocular pathology in mitochondrial superoxide dismutase (Sod2)-deficient mice," Invest. Ophthalmol. Visual Sci. 42, 2173-2178 (2001).
  19. Y. Ming, P. V. Algvere, A. Odergren, L. Berglin, I. van der Ploeg, S. Seregard, and A. Kvanta, "Subthreshold transpupillary thermotherapy reduces experimental choroidal neovascularization in the mouse without collateral damage to the neural retina," Invest. Ophthalmol. Visual Sci. 45, 1969-1974 (2004).
    [CrossRef]
  20. S. Chakravarti, J. Paul, L. Roberts, I. Chervoneva, A. Oldberg, and D. E. Birk, "Ocular and scleral alterations in gene-targeted lumican-fibromodulin double-null mice," Invest. Ophthalmol. Visual Sci. 44, 2422-2432 (2003).
    [CrossRef]
  21. M. Hammer and D. Schweitzer, "Quantitative reflection spectroscopy at the human ocular fundus," Phys. Med. Biol. 47, 179-191 (2002).
    [CrossRef] [PubMed]
  22. J. Riesz, J. Gilmore, and P. Meredith, "Quantitative scattering of melanin solutions," Biophys. J. 90, 4137-4144 (2006).
    [CrossRef] [PubMed]
  23. Oregon Medical Laser Center (OMLG). "Optical properties spectra," http://omlc.ogi.edu/spectra/.
  24. G. H. Daly, J. M. Dileonardo, N. R. Balkema, and G. W. Balkema, "The relationship between ambient lighting conditions, absolute dark-adapted thresholds, and rhodopsin in black and hypopigmented mice," Visual Neurosci. 21, 925-934 (2004).
    [CrossRef]
  25. G. W. Balkema and S. MacDonald, "Increased absolute light sensitivity in Himalayan mice with cold-induced ocular pigmentation," Visual Neurosci. 15, 841-849 (1998).
    [CrossRef]
  26. J. J. Weiter, F. C. Delori, G. Wing, and K. A. Fitch, "Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes," Invest. Ophthalmol. Visual Sci. 27, 145-152 (1986).
  27. C. N. Keilhauer and F. C. Delori, "Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin," Invest. Ophthalmol. Visual Sci. 47, 3556-3564 (2006).
    [CrossRef]
  28. A. T. Liem, J. E. Keunen, D. van Norren, and J. van de Kraats, "Rod densitometry in the aging human eye," Invest. Ophthalmol. Visual Sci. 32, 2676-2682 (1991).
  29. B. Vohnsen, "Photoreceptor waveguides and effective retinal image quality," J. Opt. Soc. Am. A 24, 597-607 (2007).
    [CrossRef]
  30. R. V. Abadi, C. M. Dickinson, E. Pascal, and E. Papas, "Retinal image quality in albinos: a review," Ophthalmic Paediatr. Genet. 11, 171-176 (1990).
    [CrossRef] [PubMed]
  31. M. Boulton, M. Rozanowska, and B. Rozanowski, "Retinal photodamage," J. Photochem. Photobiol., B 64, 144-161 (2001).
    [CrossRef]
  32. M. Wasowicz, C. Morice, P. Ferrari, J. Callebert, and C. Versaux-Botteri, "Long-term effects of light damage on the retina of albino and pigmented rats," Invest. Ophthalmol. Visual Sci. 43, 813-820 (2002).
  33. T. G. Gorgels and D. van Norren, "Two spectral types of retinal light damage occur in albino as well as in pigmented rat: no essential role for melanin," Exp. Eye Res. 66, 155-162 (1998).
    [CrossRef] [PubMed]
  34. Z. Wang, J. Dillon, and E. R. Gaillard, "Antioxidant properties of melanin in retinal pigment epithelial cells," Photochem. Photobiol. 82, 474-479 (2006).
    [CrossRef] [PubMed]

2007 (1)

2006 (3)

Z. Wang, J. Dillon, and E. R. Gaillard, "Antioxidant properties of melanin in retinal pigment epithelial cells," Photochem. Photobiol. 82, 474-479 (2006).
[CrossRef] [PubMed]

C. N. Keilhauer and F. C. Delori, "Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin," Invest. Ophthalmol. Visual Sci. 47, 3556-3564 (2006).
[CrossRef]

J. Riesz, J. Gilmore, and P. Meredith, "Quantitative scattering of melanin solutions," Biophys. J. 90, 4137-4144 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (4)

D. K. Sardar, F. S. Salinas, J. J. Perez, and A. T. Tsin, "Optical characterization of bovine retinal tissues," J. Biomed. Opt. 9, 624-631 (2004).
[CrossRef] [PubMed]

G. H. Daly, J. M. Dileonardo, N. R. Balkema, and G. W. Balkema, "The relationship between ambient lighting conditions, absolute dark-adapted thresholds, and rhodopsin in black and hypopigmented mice," Visual Neurosci. 21, 925-934 (2004).
[CrossRef]

Y. Ming, P. V. Algvere, A. Odergren, L. Berglin, I. van der Ploeg, S. Seregard, and A. Kvanta, "Subthreshold transpupillary thermotherapy reduces experimental choroidal neovascularization in the mouse without collateral damage to the neural retina," Invest. Ophthalmol. Visual Sci. 45, 1969-1974 (2004).
[CrossRef]

C. Schmucker and F. Schaeffel, "A paraxial schematic eye model for the growing C57BL/6 mouse," Vision Res. 44, 1857-1867 (2004).
[CrossRef] [PubMed]

2003 (2)

S. Chakravarti, J. Paul, L. Roberts, I. Chervoneva, A. Oldberg, and D. E. Birk, "Ocular and scleral alterations in gene-targeted lumican-fibromodulin double-null mice," Invest. Ophthalmol. Visual Sci. 44, 2422-2432 (2003).
[CrossRef]

J. Gresh, P. W. Goletz, R. K. Crouch, and B. Rohrer, "Structure-function analysis of rods and cones in juvenile, adult, and aged C57BL/6 and Balb/c mice," Visual Neurosci. 20, 211-220 (2003).
[CrossRef]

2002 (3)

M. Wasowicz, C. Morice, P. Ferrari, J. Callebert, and C. Versaux-Botteri, "Long-term effects of light damage on the retina of albino and pigmented rats," Invest. Ophthalmol. Visual Sci. 43, 813-820 (2002).

M. Hammer and D. Schweitzer, "Quantitative reflection spectroscopy at the human ocular fundus," Phys. Med. Biol. 47, 179-191 (2002).
[CrossRef] [PubMed]

S. J. Preece and E. Claridge, "Monte Carlo modeling of the spectral reflectance of the human eye," Phys. Med. Biol. 47, 2863-2877 (2002).
[CrossRef] [PubMed]

2001 (5)

M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, "Light paths in retinal vessel oxymetry," IEEE Trans. Biomed. Eng. 48, 592-598 (2001).
[CrossRef] [PubMed]

M. Hammer, D. Schweitzer, E. Thamm, and A. Kolb, "Non-invasive measurement of the concentration of melanin, xanthopyll, and hemoglobin in single fundus layers in vivo by fundus reflectometry," Int. Ophthalmol. 23, 279-289 (2001).
[CrossRef]

J. M. Sandbach, P. E. Coscun, H. E. Grossniklaus, J. E. Kokoszka, N. J. Newman, and D. C. Wallace, "Ocular pathology in mitochondrial superoxide dismutase (Sod2)-deficient mice," Invest. Ophthalmol. Visual Sci. 42, 2173-2178 (2001).

M. Boulton, M. Rozanowska, and B. Rozanowski, "Retinal photodamage," J. Photochem. Photobiol., B 64, 144-161 (2001).
[CrossRef]

A. J. Vingrys and B. V. Bui, "Development of postreceptoral function in pigmented and albino guinea pigs," Visual Neurosci. 18, 605-613 (2001).
[CrossRef]

2000 (1)

L. V. Wang and S. L. Jacques, "Source of error in calculation of optical diffuse reflectance from turbid media using diffuse theory," Comput. Methods Programs Biomed. 61, 163-170 (2000).
[CrossRef] [PubMed]

1998 (2)

G. W. Balkema and S. MacDonald, "Increased absolute light sensitivity in Himalayan mice with cold-induced ocular pigmentation," Visual Neurosci. 15, 841-849 (1998).
[CrossRef]

T. G. Gorgels and D. van Norren, "Two spectral types of retinal light damage occur in albino as well as in pigmented rat: no essential role for melanin," Exp. Eye Res. 66, 155-162 (1998).
[CrossRef] [PubMed]

1997 (2)

V. V. Tuchin, "Light scattering study of tissues," Phys. Usp. 40, 495-515 (1997).
[CrossRef]

B. L. Evans and S. B. Smith, "Analysis of esterification of retinoids in the retinal pigmented epithelium of the Mitfvit (vitiligo) mutant mouse," Mol. Vis 3, 11-22 (1997).

1995 (2)

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

1991 (1)

A. T. Liem, J. E. Keunen, D. van Norren, and J. van de Kraats, "Rod densitometry in the aging human eye," Invest. Ophthalmol. Visual Sci. 32, 2676-2682 (1991).

1990 (3)

D. J. Creel, C. G. Summers, and R. A. King, "Visual anomalies associated with albinism," Ophthalmic Physiol. Opt. 11, 193-200 (1990).

R. V. Abadi, C. M. Dickinson, E. Pascal, and E. Papas, "Retinal image quality in albinos: a review," Ophthalmic Paediatr. Genet. 11, 171-176 (1990).
[CrossRef] [PubMed]

I. Russel-Eggitt, A. Kriss, and D. S. Taylor, "Albinism in childhood: a flash VEP and ERG study," Br. J. Ophthamol. 74, 136-140 (1990).
[CrossRef]

1989 (1)

R. Abadi and E. Pascal, "The recognition and management of albinism," Ophthalmic Physiol. Opt. 9, 3-15 (1989).
[CrossRef] [PubMed]

1986 (1)

J. J. Weiter, F. C. Delori, G. Wing, and K. A. Fitch, "Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes," Invest. Ophthalmol. Visual Sci. 27, 145-152 (1986).

1941 (1)

L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

Appl. Opt. (1)

Astrophys. J. (1)

L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

Biophys. J. (1)

J. Riesz, J. Gilmore, and P. Meredith, "Quantitative scattering of melanin solutions," Biophys. J. 90, 4137-4144 (2006).
[CrossRef] [PubMed]

Br. J. Ophthamol. (1)

I. Russel-Eggitt, A. Kriss, and D. S. Taylor, "Albinism in childhood: a flash VEP and ERG study," Br. J. Ophthamol. 74, 136-140 (1990).
[CrossRef]

Comput. Methods Programs Biomed. (2)

L.-H. Wang, S. L. Jacques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

L. V. Wang and S. L. Jacques, "Source of error in calculation of optical diffuse reflectance from turbid media using diffuse theory," Comput. Methods Programs Biomed. 61, 163-170 (2000).
[CrossRef] [PubMed]

Exp. Eye Res. (1)

T. G. Gorgels and D. van Norren, "Two spectral types of retinal light damage occur in albino as well as in pigmented rat: no essential role for melanin," Exp. Eye Res. 66, 155-162 (1998).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, "Light paths in retinal vessel oxymetry," IEEE Trans. Biomed. Eng. 48, 592-598 (2001).
[CrossRef] [PubMed]

Int. Ophthalmol. (1)

M. Hammer, D. Schweitzer, E. Thamm, and A. Kolb, "Non-invasive measurement of the concentration of melanin, xanthopyll, and hemoglobin in single fundus layers in vivo by fundus reflectometry," Int. Ophthalmol. 23, 279-289 (2001).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (7)

J. M. Sandbach, P. E. Coscun, H. E. Grossniklaus, J. E. Kokoszka, N. J. Newman, and D. C. Wallace, "Ocular pathology in mitochondrial superoxide dismutase (Sod2)-deficient mice," Invest. Ophthalmol. Visual Sci. 42, 2173-2178 (2001).

Y. Ming, P. V. Algvere, A. Odergren, L. Berglin, I. van der Ploeg, S. Seregard, and A. Kvanta, "Subthreshold transpupillary thermotherapy reduces experimental choroidal neovascularization in the mouse without collateral damage to the neural retina," Invest. Ophthalmol. Visual Sci. 45, 1969-1974 (2004).
[CrossRef]

S. Chakravarti, J. Paul, L. Roberts, I. Chervoneva, A. Oldberg, and D. E. Birk, "Ocular and scleral alterations in gene-targeted lumican-fibromodulin double-null mice," Invest. Ophthalmol. Visual Sci. 44, 2422-2432 (2003).
[CrossRef]

M. Wasowicz, C. Morice, P. Ferrari, J. Callebert, and C. Versaux-Botteri, "Long-term effects of light damage on the retina of albino and pigmented rats," Invest. Ophthalmol. Visual Sci. 43, 813-820 (2002).

J. J. Weiter, F. C. Delori, G. Wing, and K. A. Fitch, "Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes," Invest. Ophthalmol. Visual Sci. 27, 145-152 (1986).

C. N. Keilhauer and F. C. Delori, "Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin," Invest. Ophthalmol. Visual Sci. 47, 3556-3564 (2006).
[CrossRef]

A. T. Liem, J. E. Keunen, D. van Norren, and J. van de Kraats, "Rod densitometry in the aging human eye," Invest. Ophthalmol. Visual Sci. 32, 2676-2682 (1991).

J. Biomed. Opt. (1)

D. K. Sardar, F. S. Salinas, J. J. Perez, and A. T. Tsin, "Optical characterization of bovine retinal tissues," J. Biomed. Opt. 9, 624-631 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Photochem. Photobiol., B (1)

M. Boulton, M. Rozanowska, and B. Rozanowski, "Retinal photodamage," J. Photochem. Photobiol., B 64, 144-161 (2001).
[CrossRef]

Mol. Vis (1)

B. L. Evans and S. B. Smith, "Analysis of esterification of retinoids in the retinal pigmented epithelium of the Mitfvit (vitiligo) mutant mouse," Mol. Vis 3, 11-22 (1997).

Ophthalmic Paediatr. Genet. (1)

R. V. Abadi, C. M. Dickinson, E. Pascal, and E. Papas, "Retinal image quality in albinos: a review," Ophthalmic Paediatr. Genet. 11, 171-176 (1990).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (2)

D. J. Creel, C. G. Summers, and R. A. King, "Visual anomalies associated with albinism," Ophthalmic Physiol. Opt. 11, 193-200 (1990).

R. Abadi and E. Pascal, "The recognition and management of albinism," Ophthalmic Physiol. Opt. 9, 3-15 (1989).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

Z. Wang, J. Dillon, and E. R. Gaillard, "Antioxidant properties of melanin in retinal pigment epithelial cells," Photochem. Photobiol. 82, 474-479 (2006).
[CrossRef] [PubMed]

Phys. Med. Biol. (3)

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

S. J. Preece and E. Claridge, "Monte Carlo modeling of the spectral reflectance of the human eye," Phys. Med. Biol. 47, 2863-2877 (2002).
[CrossRef] [PubMed]

M. Hammer and D. Schweitzer, "Quantitative reflection spectroscopy at the human ocular fundus," Phys. Med. Biol. 47, 179-191 (2002).
[CrossRef] [PubMed]

Phys. Usp. (1)

V. V. Tuchin, "Light scattering study of tissues," Phys. Usp. 40, 495-515 (1997).
[CrossRef]

Vision Res. (1)

C. Schmucker and F. Schaeffel, "A paraxial schematic eye model for the growing C57BL/6 mouse," Vision Res. 44, 1857-1867 (2004).
[CrossRef] [PubMed]

Visual Neurosci. (4)

G. H. Daly, J. M. Dileonardo, N. R. Balkema, and G. W. Balkema, "The relationship between ambient lighting conditions, absolute dark-adapted thresholds, and rhodopsin in black and hypopigmented mice," Visual Neurosci. 21, 925-934 (2004).
[CrossRef]

G. W. Balkema and S. MacDonald, "Increased absolute light sensitivity in Himalayan mice with cold-induced ocular pigmentation," Visual Neurosci. 15, 841-849 (1998).
[CrossRef]

A. J. Vingrys and B. V. Bui, "Development of postreceptoral function in pigmented and albino guinea pigs," Visual Neurosci. 18, 605-613 (2001).
[CrossRef]

J. Gresh, P. W. Goletz, R. K. Crouch, and B. Rohrer, "Structure-function analysis of rods and cones in juvenile, adult, and aged C57BL/6 and Balb/c mice," Visual Neurosci. 20, 211-220 (2003).
[CrossRef]

Other (1)

Oregon Medical Laser Center (OMLG). "Optical properties spectra," http://omlc.ogi.edu/spectra/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Five-layer ocular fundus structure used in the simulation. The fifth layer was modeled as a semi-infinite medium outside the sclera.

Fig. 2
Fig. 2

Comparison between the spherical model used in this study and the MCML in the slab geometry. The optical properties of the three-layer sample are listed in Table 2.

Fig. 3
Fig. 3

Comparison between the spherical and the slab retina models in bleached human neural retina. The hemoglobin concentration used in the simulation was 1.7 mmol l .

Fig. 4
Fig. 4

Effects of melanin concentration on light absorption in bleached human neural retina at three different wavelengths ( 510 nm , 550 nm , and 630 nm ).

Fig. 5
Fig. 5

Spectra of light absorption in albino and normal human neural retinas at different hemoglobin concentrations.

Fig. 6
Fig. 6

Light absorption in albino human neural retina attributed to photons backscattered from sclera. H-TBA, total backscattered absorption; H-SBA, absorption due to backscattered photons from sclera. The hemoglobin concentration used in the simulation was 1.7 mmol l .

Fig. 7
Fig. 7

(a) Optical absorption coefficients of rods and bleached and dark-adapted neural retinas. (b) Light absorption spectra in dark-adapted (DA) and bleached (PB) human neural retina.

Fig. 8
Fig. 8

(a) Light absorption in bleached mouse neural retina calculated by the spherical and slab retina models. The hemoglobin concentration used in the simulation was 1.7 mmol l . (b) Spectra of light absorption in albino and normal mouse neural retinas at different hemoglobin concentrations.

Fig. 9
Fig. 9

Spatial distribution of light absorption in human neural retina. The retina was illuminated by a grid light source ( 510 nm ) . The image resolution for both was 0.17 mm pixel . The 1D absorption profiles were obtained along a horizontal line across the absorption images. The hemoglobin concentration used in the simulation was 1.7 mmol l .

Tables (4)

Tables Icon

Table 1 Refractive Indices and Optical Parameters of Human and Mouse Fundus

Tables Icon

Table 2 Parameters of a Three-Layer Tissue Model Used for Program Verification

Tables Icon

Table 3 Light Absorption in Bleached Human Neural Retina at Three Wavelengths a

Tables Icon

Table 4 Light Absorption in Dark-Adapted Human Neural Retina at Three Wavelengths a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R = I + 2 N cos θ i ,
T = n 1 n 2 I ( cos θ t n 1 n 2 cos θ i ) N ,
μ a RPE = 2.3 c m RPE ε m ( λ ) ,
μ a Choroid = 2.3 c m Choroid ε m ( λ ) + 2.3 c b ε b ( λ ) ,

Metrics