Abstract

A method of producing inkless parameric color pairs is studied. In this method, colors are formed additively using diffraction gratings with differing grating periods as primary colors. Gratings with different grating periods reflect different spectral radiance peaks of a fluorescent lamp to the desired viewing angle, according to the grating equation. Four spectral peaks of a 4000K fluorescent lamp—red, green, cyan, and blue—are used as the primary colors. The colors are mixed additively by fixing the relative areas of different grating periods inside a pixel. With four primary colors it is possible to mix certain colors with different triplets of primary colors. Thus, it is theoretically possible to produce metameric colors. In this study, three parameric color pairs are fabricated using electron beam lithography, electroplating, and hot embossing. The radiance spectra of the color pairs are measured by spectroradiometer from hot-embossed plastic samples. The CIELAB ΔEab and CIEDE2000 color differences between radiance spectra of the color pairs are calculated. The CIEDE2000 color differences of color pairs are between 2.6 and 7.2 units in reference viewing conditions. The effects of viewing angle and different light sources are also evaluated. It is found that both the viewing angle and the light source have very strong influences on the color differences of the color pairs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Tossavainen, J. Orava, P. Laakkonen, M. Kuittinen, and T. Jaaskelainen, “Additive colour mixing by surface relief gratings utilizing the power spectrum of a fluorescent lamp,” J. Mod. Opt. 53, 1577-1587 (2006).
    [CrossRef]
  2. J. Orava, T. Jaaskelainen., J. Parkkinen, and V.-P. Leppanen, “Diffractive CIE 1931 chromaticity diagram,” Color Res. Appl. 32, 409-413 (2007).
    [CrossRef]
  3. E. Hecht, Optics, 3rd ed. (Addison Wesley, 1998).
  4. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods. Quantitative Data and Formulae, 2nd ed. (Wiley-Interscience, 1982).
  5. A. K. Roy Choudhury and S. M. Chatterjee, “Evaluation of the performance of metameric indices,” Color Res. Appl. 21, 26-34 (1996).
    [CrossRef]
  6. D. B. Judd and G. Wyszecki, Color in Business, Science and Industry (Wiley, 1975), p. 95.
  7. American Society for Testing and Materials, E284-08, “Standard terminology of appearance,” (ASTM Committee on Standards, 2008), pp 15, 16.
  8. N. Tossavainen, M. Kuittinen, and T. Vallius, “Producing illumination-independent additively mixed colors by diffractive optics,” J. Opt. Soc. Am. A 23, 981-985 (2006).
    [CrossRef]
  9. B. Baloukas and L. Martinu, “Metameric interference security image structures,” Appl. Opt. 47, 1585-1593 (2008).
    [CrossRef] [PubMed]
  10. http://www.patentstorm. us/patents/6013307/description.html (September 2008).
  11. P.Rai-Choudhury, ed., Handbook of Microlithography, Micromachining and Microfabrication, Vol. 1 (SPIE, 1997).
  12. P.Rai-Choudhury, ed., Handbook of Microlithography, Micromachining and Microfabrication, Vol. 2 (SPIE, 1997).
  13. P. Laakkonen, “High-efficiency diffractive optics with electron beam lithography,” Ph.D. thesis (University of Joensuu, 2000).
  14. P. Green and L. McDonald, Colour Engineering, Achieving Device Independent Colour (Wiley, 2002).
  15. M. R. Luo, G. Cui, and B. Rigg, “The development of CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 394-402 (2001).
    [CrossRef]
  16. R. L. Alfvin and M. D. Fairchild, “Observer variability in metameric color matches using color reproduction media,” Color Res. Appl. 22, 174-188 (1997).
    [CrossRef]
  17. J. Lautanen, “Fabrication of surface relief gratings and their applications in diffractive optics,” Ph.D. thesis (University of Joensuu, 2000).
  18. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniturazation (CRC, 2002).
  19. G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera colorimetric characterization based on polynomial modeling,” Color Res. Appl. 26, 76-84 (2001).
    [CrossRef]
  20. J. Orava, T. Jaaskelainen, and J. Parkkinen, “Color errors of digital cameras.” Color Res. Appl. 29, 217-221 (2004).
    [CrossRef]

2008 (1)

2007 (1)

J. Orava, T. Jaaskelainen., J. Parkkinen, and V.-P. Leppanen, “Diffractive CIE 1931 chromaticity diagram,” Color Res. Appl. 32, 409-413 (2007).
[CrossRef]

2006 (2)

N. Tossavainen, J. Orava, P. Laakkonen, M. Kuittinen, and T. Jaaskelainen, “Additive colour mixing by surface relief gratings utilizing the power spectrum of a fluorescent lamp,” J. Mod. Opt. 53, 1577-1587 (2006).
[CrossRef]

N. Tossavainen, M. Kuittinen, and T. Vallius, “Producing illumination-independent additively mixed colors by diffractive optics,” J. Opt. Soc. Am. A 23, 981-985 (2006).
[CrossRef]

2004 (1)

J. Orava, T. Jaaskelainen, and J. Parkkinen, “Color errors of digital cameras.” Color Res. Appl. 29, 217-221 (2004).
[CrossRef]

2001 (2)

G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera colorimetric characterization based on polynomial modeling,” Color Res. Appl. 26, 76-84 (2001).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 394-402 (2001).
[CrossRef]

1997 (1)

R. L. Alfvin and M. D. Fairchild, “Observer variability in metameric color matches using color reproduction media,” Color Res. Appl. 22, 174-188 (1997).
[CrossRef]

1996 (1)

A. K. Roy Choudhury and S. M. Chatterjee, “Evaluation of the performance of metameric indices,” Color Res. Appl. 21, 26-34 (1996).
[CrossRef]

Alfvin, R. L.

R. L. Alfvin and M. D. Fairchild, “Observer variability in metameric color matches using color reproduction media,” Color Res. Appl. 22, 174-188 (1997).
[CrossRef]

Baloukas, B.

Chatterjee, S. M.

A. K. Roy Choudhury and S. M. Chatterjee, “Evaluation of the performance of metameric indices,” Color Res. Appl. 21, 26-34 (1996).
[CrossRef]

Cui, G.

M. R. Luo, G. Cui, and B. Rigg, “The development of CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 394-402 (2001).
[CrossRef]

Fairchild, M. D.

R. L. Alfvin and M. D. Fairchild, “Observer variability in metameric color matches using color reproduction media,” Color Res. Appl. 22, 174-188 (1997).
[CrossRef]

Green, P.

P. Green and L. McDonald, Colour Engineering, Achieving Device Independent Colour (Wiley, 2002).

Hecht, E.

E. Hecht, Optics, 3rd ed. (Addison Wesley, 1998).

Hong, G.

G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera colorimetric characterization based on polynomial modeling,” Color Res. Appl. 26, 76-84 (2001).
[CrossRef]

Jaaskelainen, T.

N. Tossavainen, J. Orava, P. Laakkonen, M. Kuittinen, and T. Jaaskelainen, “Additive colour mixing by surface relief gratings utilizing the power spectrum of a fluorescent lamp,” J. Mod. Opt. 53, 1577-1587 (2006).
[CrossRef]

J. Orava, T. Jaaskelainen, and J. Parkkinen, “Color errors of digital cameras.” Color Res. Appl. 29, 217-221 (2004).
[CrossRef]

Jaaskelainen., T.

J. Orava, T. Jaaskelainen., J. Parkkinen, and V.-P. Leppanen, “Diffractive CIE 1931 chromaticity diagram,” Color Res. Appl. 32, 409-413 (2007).
[CrossRef]

Judd, D. B.

D. B. Judd and G. Wyszecki, Color in Business, Science and Industry (Wiley, 1975), p. 95.

Kuittinen, M.

N. Tossavainen, J. Orava, P. Laakkonen, M. Kuittinen, and T. Jaaskelainen, “Additive colour mixing by surface relief gratings utilizing the power spectrum of a fluorescent lamp,” J. Mod. Opt. 53, 1577-1587 (2006).
[CrossRef]

N. Tossavainen, M. Kuittinen, and T. Vallius, “Producing illumination-independent additively mixed colors by diffractive optics,” J. Opt. Soc. Am. A 23, 981-985 (2006).
[CrossRef]

Laakkonen, P.

N. Tossavainen, J. Orava, P. Laakkonen, M. Kuittinen, and T. Jaaskelainen, “Additive colour mixing by surface relief gratings utilizing the power spectrum of a fluorescent lamp,” J. Mod. Opt. 53, 1577-1587 (2006).
[CrossRef]

P. Laakkonen, “High-efficiency diffractive optics with electron beam lithography,” Ph.D. thesis (University of Joensuu, 2000).

Lautanen, J.

J. Lautanen, “Fabrication of surface relief gratings and their applications in diffractive optics,” Ph.D. thesis (University of Joensuu, 2000).

Leppanen, V.-P.

J. Orava, T. Jaaskelainen., J. Parkkinen, and V.-P. Leppanen, “Diffractive CIE 1931 chromaticity diagram,” Color Res. Appl. 32, 409-413 (2007).
[CrossRef]

Luo, M. R.

G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera colorimetric characterization based on polynomial modeling,” Color Res. Appl. 26, 76-84 (2001).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 394-402 (2001).
[CrossRef]

Madou, M. J.

M. J. Madou, Fundamentals of Microfabrication: The Science of Miniturazation (CRC, 2002).

Martinu, L.

McDonald, L.

P. Green and L. McDonald, Colour Engineering, Achieving Device Independent Colour (Wiley, 2002).

Orava, J.

J. Orava, T. Jaaskelainen., J. Parkkinen, and V.-P. Leppanen, “Diffractive CIE 1931 chromaticity diagram,” Color Res. Appl. 32, 409-413 (2007).
[CrossRef]

N. Tossavainen, J. Orava, P. Laakkonen, M. Kuittinen, and T. Jaaskelainen, “Additive colour mixing by surface relief gratings utilizing the power spectrum of a fluorescent lamp,” J. Mod. Opt. 53, 1577-1587 (2006).
[CrossRef]

J. Orava, T. Jaaskelainen, and J. Parkkinen, “Color errors of digital cameras.” Color Res. Appl. 29, 217-221 (2004).
[CrossRef]

Parkkinen, J.

J. Orava, T. Jaaskelainen., J. Parkkinen, and V.-P. Leppanen, “Diffractive CIE 1931 chromaticity diagram,” Color Res. Appl. 32, 409-413 (2007).
[CrossRef]

J. Orava, T. Jaaskelainen, and J. Parkkinen, “Color errors of digital cameras.” Color Res. Appl. 29, 217-221 (2004).
[CrossRef]

Rhodes, P. A.

G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera colorimetric characterization based on polynomial modeling,” Color Res. Appl. 26, 76-84 (2001).
[CrossRef]

Rigg, B.

M. R. Luo, G. Cui, and B. Rigg, “The development of CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 394-402 (2001).
[CrossRef]

Roy Choudhury, A. K.

A. K. Roy Choudhury and S. M. Chatterjee, “Evaluation of the performance of metameric indices,” Color Res. Appl. 21, 26-34 (1996).
[CrossRef]

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods. Quantitative Data and Formulae, 2nd ed. (Wiley-Interscience, 1982).

Tossavainen, N.

N. Tossavainen, J. Orava, P. Laakkonen, M. Kuittinen, and T. Jaaskelainen, “Additive colour mixing by surface relief gratings utilizing the power spectrum of a fluorescent lamp,” J. Mod. Opt. 53, 1577-1587 (2006).
[CrossRef]

N. Tossavainen, M. Kuittinen, and T. Vallius, “Producing illumination-independent additively mixed colors by diffractive optics,” J. Opt. Soc. Am. A 23, 981-985 (2006).
[CrossRef]

Vallius, T.

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods. Quantitative Data and Formulae, 2nd ed. (Wiley-Interscience, 1982).

D. B. Judd and G. Wyszecki, Color in Business, Science and Industry (Wiley, 1975), p. 95.

Appl. Opt. (1)

Color Res. Appl. (6)

A. K. Roy Choudhury and S. M. Chatterjee, “Evaluation of the performance of metameric indices,” Color Res. Appl. 21, 26-34 (1996).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 394-402 (2001).
[CrossRef]

R. L. Alfvin and M. D. Fairchild, “Observer variability in metameric color matches using color reproduction media,” Color Res. Appl. 22, 174-188 (1997).
[CrossRef]

J. Orava, T. Jaaskelainen., J. Parkkinen, and V.-P. Leppanen, “Diffractive CIE 1931 chromaticity diagram,” Color Res. Appl. 32, 409-413 (2007).
[CrossRef]

G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera colorimetric characterization based on polynomial modeling,” Color Res. Appl. 26, 76-84 (2001).
[CrossRef]

J. Orava, T. Jaaskelainen, and J. Parkkinen, “Color errors of digital cameras.” Color Res. Appl. 29, 217-221 (2004).
[CrossRef]

J. Mod. Opt. (1)

N. Tossavainen, J. Orava, P. Laakkonen, M. Kuittinen, and T. Jaaskelainen, “Additive colour mixing by surface relief gratings utilizing the power spectrum of a fluorescent lamp,” J. Mod. Opt. 53, 1577-1587 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Other (11)

E. Hecht, Optics, 3rd ed. (Addison Wesley, 1998).

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods. Quantitative Data and Formulae, 2nd ed. (Wiley-Interscience, 1982).

J. Lautanen, “Fabrication of surface relief gratings and their applications in diffractive optics,” Ph.D. thesis (University of Joensuu, 2000).

M. J. Madou, Fundamentals of Microfabrication: The Science of Miniturazation (CRC, 2002).

D. B. Judd and G. Wyszecki, Color in Business, Science and Industry (Wiley, 1975), p. 95.

American Society for Testing and Materials, E284-08, “Standard terminology of appearance,” (ASTM Committee on Standards, 2008), pp 15, 16.

http://www.patentstorm. us/patents/6013307/description.html (September 2008).

P.Rai-Choudhury, ed., Handbook of Microlithography, Micromachining and Microfabrication, Vol. 1 (SPIE, 1997).

P.Rai-Choudhury, ed., Handbook of Microlithography, Micromachining and Microfabrication, Vol. 2 (SPIE, 1997).

P. Laakkonen, “High-efficiency diffractive optics with electron beam lithography,” Ph.D. thesis (University of Joensuu, 2000).

P. Green and L. McDonald, Colour Engineering, Achieving Device Independent Colour (Wiley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Different colors reflecting from diffraction gratings to the same angle.

Fig. 2
Fig. 2

Radiance spectrum of a 4000 K fluorescent lamp.

Fig. 3
Fig. 3

Measured radiance spectra of the primary colors.

Fig. 4
Fig. 4

Different gamuts with four primary colors and theoretical x y values of color pairs.

Fig. 5
Fig. 5

Schematic drawing of a pixel; the gray lines represent grating lines.

Fig. 6
Fig. 6

SEM image from the beige RGC pixel: (a) RGC pixel; (b) greater magnification of the RGC pixel. Green periods ( 1.10 μ m ) are on central area.

Fig. 7
Fig. 7

Measuring setup.

Fig. 8
Fig. 8

Radiance spectra of the color pairs at 30° viewing angle: (a) blue color pair; (b) beige color pair; (c) purple color pair.

Fig. 9
Fig. 9

x y values of the color pairs in CIE 1931 chromaticity diagram at different viewing angles with 4000 K illumination: (a) 26°; (b) 28°; (c) 30°; (d) 32°; (e) 34°.

Fig. 10
Fig. 10

CIEDE2000 color differences of the color pairs at different viewing angles.

Fig. 11
Fig. 11

Radiance spectra of 6500 K fluorescent lamp.

Fig. 12
Fig. 12

x y values of the color pairs in CIE 1931 chromaticity diagram with 6500 K illumination and viewing angle of 30°.

Fig. 13
Fig. 13

Digital photograph of the color pairs at 30° viewing angle. From the left: blue, beige, and purple samples.

Tables (4)

Tables Icon

Table 1 Properties of the Primary Gratings a

Tables Icon

Table 2 Properties of the Color Pairs in Fig. 4

Tables Icon

Table 3 CIE 1931 Chromaticity Values, CIELAB Values, and Δ E ab Color Differences of Three Color Pairs at Viewing Angle of 30°

Tables Icon

Table 4 CIE 1931 Chromaticity Values, CIELAB Values, and Δ E ab Color Differences of Three Color Pairs with 6500 K Illuminant at Viewing Angle of 30°

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n sin ( θ r ) = n sin ( θ i ) + m λ d ,

Metrics