A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quantum Electron. 39, 1253-1272 (2007).

[CrossRef]

A. Jebali, D. Erni, S. Gulde, R. F. Mahrt, and W. Bachtold, “Analytical calculation of the Q factor for circular-grating microcavities,” J. Opt. Soc. Am. B 24, 906-915 (2007). Note that the radiation power loss is found from a formulation implying that a unit source is located at the origin [see Eq. ], while the stored power is found from a standing-wave source-free formulation [see Eq. (22)]. These are two different electromagnetic problems, so it is erroneous to blend their solutions together in the calculation of Q factor.

[CrossRef]

X. Sun and A. Yariv, “Modal properties and modal control in vertically emitting annular Bragg lasers,” Opt. Express 15, 17323-17333 (2007).

[CrossRef]
[PubMed]

J. Scheuer, “Radial Bragg lasers: optimal design for minimal threshold levels and enhanced mode discrimination,” J. Opt. Soc. Am. B 24, 2178-2184 (2007).

[CrossRef]

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).

[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part 1: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).

[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part 2: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).

[CrossRef]

S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of WG modes in symmetrical photonic molecules,” Opt. Lett. 31, 338-340 (2006).

[CrossRef]
[PubMed]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of WG modes in two identical microdisks and its effect on the lasing spectra and thresholds,” IEEE J. Sel. Top. Quantum Electron. 12, 78-85 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with WG modes,” Opt. Lett. 31, 921-923 (2006).

[CrossRef]
[PubMed]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Ultralow lasing thresholds of the pi-type supermodes in cyclic photonic molecules composed of sub-micron disks with monopole and dipole modes,” IEEE Photon. Technol. Lett. 18, 1993-1995 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135-1142 (2005).

[CrossRef]

A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005).

[CrossRef]

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Opt. Commun. 235, 401-406 (2004).

[CrossRef]

A. Jebali, R. F. Mahrt, N. Moll, C. Bauer, G. L. Bona, and W. Bachtold, “Lasing in organic circular grating structures,” J. Appl. Phys. 96, 3043-3049 (2004).

[CrossRef]

D. Labilloy, H. Benisty, and C. Weisbuch, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314-1316 (1998).

[CrossRef]

P. W. Evans and N. Holonyak, Jr., “Room temperature photopump laser operation of native-oxide-defined coupled GaAs-AlAs superlattice microrings,” Appl. Phys. Lett. 69, 2391-2393 (1996).

[CrossRef]

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Opt. Commun. 235, 401-406 (2004).

[CrossRef]

A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005).

[CrossRef]

A. Jebali, D. Erni, S. Gulde, R. F. Mahrt, and W. Bachtold, “Analytical calculation of the Q factor for circular-grating microcavities,” J. Opt. Soc. Am. B 24, 906-915 (2007). Note that the radiation power loss is found from a formulation implying that a unit source is located at the origin [see Eq. ], while the stored power is found from a standing-wave source-free formulation [see Eq. (22)]. These are two different electromagnetic problems, so it is erroneous to blend their solutions together in the calculation of Q factor.

[CrossRef]

A. Jebali, R. F. Mahrt, N. Moll, C. Bauer, G. L. Bona, and W. Bachtold, “Lasing in organic circular grating structures,” J. Appl. Phys. 96, 3043-3049 (2004).

[CrossRef]

A. Jebali, R. F. Mahrt, N. Moll, C. Bauer, G. L. Bona, and W. Bachtold, “Lasing in organic circular grating structures,” J. Appl. Phys. 96, 3043-3049 (2004).

[CrossRef]

D. Labilloy, H. Benisty, and C. Weisbuch, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314-1316 (1998).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135-1142 (2005).

[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quantum Electron. 39, 1253-1272 (2007).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of WG modes in two identical microdisks and its effect on the lasing spectra and thresholds,” IEEE J. Sel. Top. Quantum Electron. 12, 78-85 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with WG modes,” Opt. Lett. 31, 921-923 (2006).

[CrossRef]
[PubMed]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Ultralow lasing thresholds of the pi-type supermodes in cyclic photonic molecules composed of sub-micron disks with monopole and dipole modes,” IEEE Photon. Technol. Lett. 18, 1993-1995 (2006).

[CrossRef]

A. Jebali, R. F. Mahrt, N. Moll, C. Bauer, G. L. Bona, and W. Bachtold, “Lasing in organic circular grating structures,” J. Appl. Phys. 96, 3043-3049 (2004).

[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quantum Electron. 39, 1253-1272 (2007).

[CrossRef]

S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of WG modes in symmetrical photonic molecules,” Opt. Lett. 31, 338-340 (2006).

[CrossRef]
[PubMed]

M. Born and E. Wolf, Principles of Optics, 4th ed., (Pergamon, 1968).

P. W. Evans and N. Holonyak, Jr., “Room temperature photopump laser operation of native-oxide-defined coupled GaAs-AlAs superlattice microrings,” Appl. Phys. Lett. 69, 2391-2393 (1996).

[CrossRef]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 1980).

G. Hanson and A. Yakovlev, Operator Theory for Electromagnetics (Springer-Verlag, 2002).

P. W. Evans and N. Holonyak, Jr., “Room temperature photopump laser operation of native-oxide-defined coupled GaAs-AlAs superlattice microrings,” Appl. Phys. Lett. 69, 2391-2393 (1996).

[CrossRef]

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).

[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part 1: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).

[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part 2: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).

[CrossRef]

A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005).

[CrossRef]

A. Jebali, D. Erni, S. Gulde, R. F. Mahrt, and W. Bachtold, “Analytical calculation of the Q factor for circular-grating microcavities,” J. Opt. Soc. Am. B 24, 906-915 (2007). Note that the radiation power loss is found from a formulation implying that a unit source is located at the origin [see Eq. ], while the stored power is found from a standing-wave source-free formulation [see Eq. (22)]. These are two different electromagnetic problems, so it is erroneous to blend their solutions together in the calculation of Q factor.

[CrossRef]

A. Jebali, R. F. Mahrt, N. Moll, C. Bauer, G. L. Bona, and W. Bachtold, “Lasing in organic circular grating structures,” J. Appl. Phys. 96, 3043-3049 (2004).

[CrossRef]

D. Labilloy, H. Benisty, and C. Weisbuch, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314-1316 (1998).

[CrossRef]

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Opt. Commun. 235, 401-406 (2004).

[CrossRef]

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Opt. Commun. 235, 401-406 (2004).

[CrossRef]

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).

[CrossRef]

A. Jebali, D. Erni, S. Gulde, R. F. Mahrt, and W. Bachtold, “Analytical calculation of the Q factor for circular-grating microcavities,” J. Opt. Soc. Am. B 24, 906-915 (2007). Note that the radiation power loss is found from a formulation implying that a unit source is located at the origin [see Eq. ], while the stored power is found from a standing-wave source-free formulation [see Eq. (22)]. These are two different electromagnetic problems, so it is erroneous to blend their solutions together in the calculation of Q factor.

[CrossRef]

A. Jebali, R. F. Mahrt, N. Moll, C. Bauer, G. L. Bona, and W. Bachtold, “Lasing in organic circular grating structures,” J. Appl. Phys. 96, 3043-3049 (2004).

[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part 2: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).

[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part 1: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).

[CrossRef]

A. Jebali, R. F. Mahrt, N. Moll, C. Bauer, G. L. Bona, and W. Bachtold, “Lasing in organic circular grating structures,” J. Appl. Phys. 96, 3043-3049 (2004).

[CrossRef]

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Opt. Commun. 235, 401-406 (2004).

[CrossRef]

A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005).

[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quantum Electron. 39, 1253-1272 (2007).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of WG modes in two identical microdisks and its effect on the lasing spectra and thresholds,” IEEE J. Sel. Top. Quantum Electron. 12, 78-85 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with WG modes,” Opt. Lett. 31, 921-923 (2006).

[CrossRef]
[PubMed]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Ultralow lasing thresholds of the pi-type supermodes in cyclic photonic molecules composed of sub-micron disks with monopole and dipole modes,” IEEE Photon. Technol. Lett. 18, 1993-1995 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135-1142 (2005).

[CrossRef]

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Opt. Commun. 235, 401-406 (2004).

[CrossRef]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 1980).

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).

[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quantum Electron. 39, 1253-1272 (2007).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of WG modes in two identical microdisks and its effect on the lasing spectra and thresholds,” IEEE J. Sel. Top. Quantum Electron. 12, 78-85 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Ultralow lasing thresholds of the pi-type supermodes in cyclic photonic molecules composed of sub-micron disks with monopole and dipole modes,” IEEE Photon. Technol. Lett. 18, 1993-1995 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with WG modes,” Opt. Lett. 31, 921-923 (2006).

[CrossRef]
[PubMed]

E. I. Smotrova, A. I. Nosich, T. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135-1142 (2005).

[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quantum Electron. 39, 1253-1272 (2007).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of WG modes in two identical microdisks and its effect on the lasing spectra and thresholds,” IEEE J. Sel. Top. Quantum Electron. 12, 78-85 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Ultralow lasing thresholds of the pi-type supermodes in cyclic photonic molecules composed of sub-micron disks with monopole and dipole modes,” IEEE Photon. Technol. Lett. 18, 1993-1995 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with WG modes,” Opt. Lett. 31, 921-923 (2006).

[CrossRef]
[PubMed]

E. I. Smotrova, A. I. Nosich, T. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135-1142 (2005).

[CrossRef]

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).

[CrossRef]

D. Labilloy, H. Benisty, and C. Weisbuch, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314-1316 (1998).

[CrossRef]

M. Born and E. Wolf, Principles of Optics, 4th ed., (Pergamon, 1968).

G. Hanson and A. Yakovlev, Operator Theory for Electromagnetics (Springer-Verlag, 2002).

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).

[CrossRef]

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).

[CrossRef]

P. W. Evans and N. Holonyak, Jr., “Room temperature photopump laser operation of native-oxide-defined coupled GaAs-AlAs superlattice microrings,” Appl. Phys. Lett. 69, 2391-2393 (1996).

[CrossRef]

A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005).

[CrossRef]

D. Labilloy, H. Benisty, and C. Weisbuch, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314-1316 (1998).

[CrossRef]

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).

[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part 1: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).

[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part 2: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of WG modes in two identical microdisks and its effect on the lasing spectra and thresholds,” IEEE J. Sel. Top. Quantum Electron. 12, 78-85 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135-1142 (2005).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Ultralow lasing thresholds of the pi-type supermodes in cyclic photonic molecules composed of sub-micron disks with monopole and dipole modes,” IEEE Photon. Technol. Lett. 18, 1993-1995 (2006).

[CrossRef]

A. Jebali, R. F. Mahrt, N. Moll, C. Bauer, G. L. Bona, and W. Bachtold, “Lasing in organic circular grating structures,” J. Appl. Phys. 96, 3043-3049 (2004).

[CrossRef]

J. Scheuer, “Radial Bragg lasers: optimal design for minimal threshold levels and enhanced mode discrimination,” J. Opt. Soc. Am. B 24, 2178-2184 (2007).

[CrossRef]

A. Jebali, D. Erni, S. Gulde, R. F. Mahrt, and W. Bachtold, “Analytical calculation of the Q factor for circular-grating microcavities,” J. Opt. Soc. Am. B 24, 906-915 (2007). Note that the radiation power loss is found from a formulation implying that a unit source is located at the origin [see Eq. ], while the stored power is found from a standing-wave source-free formulation [see Eq. (22)]. These are two different electromagnetic problems, so it is erroneous to blend their solutions together in the calculation of Q factor.

[CrossRef]

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Opt. Commun. 235, 401-406 (2004).

[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quantum Electron. 39, 1253-1272 (2007).

[CrossRef]

M. Born and E. Wolf, Principles of Optics, 4th ed., (Pergamon, 1968).

G. Hanson and A. Yakovlev, Operator Theory for Electromagnetics (Springer-Verlag, 2002).

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 1980).