Abstract

The method recently proposed by Korovin [J. Opt. Soc. Am. A 25, 394 (2008)] for modeling multilayer diffraction gratings is in fact the well-known Rayleigh–Fourier method. Many remarks in the above reference in comparing the proposed method and the C method are biased and inaccurate.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Korovin, “Improved method for computing of light-matter interaction in multilayer corrugated structures,” J. Opt. Soc. Am. A 25, 394-399 (2008).
    [CrossRef]
  2. J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11, 235-241 (1980).
    [CrossRef]
  3. A. Wirgin, “On Rayleigh's theory of sinusoidal diffraction gratings,” Opt. Acta 27, 1671-1692 (1980).
    [CrossRef]
  4. A. Wirgin, “On Rayleigh's theory of partially reflecting gratings,” Opt. Acta 28, 1377-1404 (1981).
    [CrossRef]
  5. E. Popov and L. Mashev, “Convergence of Rayleigh-Fourier method and rigorous differential method for relief diffraction gratings,” Opt. Acta 33, 593-605 (1986).
    [CrossRef]
  6. E. Popov and L. Mashev, “Convergence of Rayleigh-Fourier method and rigorous differential method for relief diffraction gratings--nonsinusoidal profile,” Opt. Acta 34, 155-158 (1987).
  7. V. Bagnoud and S. Mainguy, “Diffraction of electromagnetic waves by dielectric crossed gratings: a three-dimensional Rayleigh-Fourier solution,” J. Opt. Soc. Am. A 16, 1277-1285 (1999).
    [CrossRef]
  8. M. Bagieu and D. Maystre, “Regularized Waterman and Rayleigh methods: extension to two-dimensional gratings,” J. Opt. Soc. Am. A 16, 284-292 (1999).
    [CrossRef]
  9. S. D. Gupta, G. V. Varada, and G. S. Agarwal, “Surface plasmons in two-sided corrugated thin films,” Phys. Rev. B 36, 6331-6335 (1987).
    [CrossRef]
  10. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839-846 (1982).
    [CrossRef]
  11. L. Li, “Justification of matrix truncation in the modal methods of diffraction gratings,” J. Opt. A, Pure Appl. Opt. 1, 531-536 (1999).
    [CrossRef]

2008

1999

1987

E. Popov and L. Mashev, “Convergence of Rayleigh-Fourier method and rigorous differential method for relief diffraction gratings--nonsinusoidal profile,” Opt. Acta 34, 155-158 (1987).

S. D. Gupta, G. V. Varada, and G. S. Agarwal, “Surface plasmons in two-sided corrugated thin films,” Phys. Rev. B 36, 6331-6335 (1987).
[CrossRef]

1986

E. Popov and L. Mashev, “Convergence of Rayleigh-Fourier method and rigorous differential method for relief diffraction gratings,” Opt. Acta 33, 593-605 (1986).
[CrossRef]

1982

1981

A. Wirgin, “On Rayleigh's theory of partially reflecting gratings,” Opt. Acta 28, 1377-1404 (1981).
[CrossRef]

1980

J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11, 235-241 (1980).
[CrossRef]

A. Wirgin, “On Rayleigh's theory of sinusoidal diffraction gratings,” Opt. Acta 27, 1671-1692 (1980).
[CrossRef]

Agarwal, G. S.

S. D. Gupta, G. V. Varada, and G. S. Agarwal, “Surface plasmons in two-sided corrugated thin films,” Phys. Rev. B 36, 6331-6335 (1987).
[CrossRef]

Bagieu, M.

Bagnoud, V.

Chandezon, J.

J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839-846 (1982).
[CrossRef]

J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11, 235-241 (1980).
[CrossRef]

Cornet, G.

Dupuis, M. T.

Gupta, S. D.

S. D. Gupta, G. V. Varada, and G. S. Agarwal, “Surface plasmons in two-sided corrugated thin films,” Phys. Rev. B 36, 6331-6335 (1987).
[CrossRef]

Korovin, A. V.

Li, L.

L. Li, “Justification of matrix truncation in the modal methods of diffraction gratings,” J. Opt. A, Pure Appl. Opt. 1, 531-536 (1999).
[CrossRef]

Mainguy, S.

Mashev, L.

E. Popov and L. Mashev, “Convergence of Rayleigh-Fourier method and rigorous differential method for relief diffraction gratings--nonsinusoidal profile,” Opt. Acta 34, 155-158 (1987).

E. Popov and L. Mashev, “Convergence of Rayleigh-Fourier method and rigorous differential method for relief diffraction gratings,” Opt. Acta 33, 593-605 (1986).
[CrossRef]

Maystre, D.

Popov, E.

E. Popov and L. Mashev, “Convergence of Rayleigh-Fourier method and rigorous differential method for relief diffraction gratings--nonsinusoidal profile,” Opt. Acta 34, 155-158 (1987).

E. Popov and L. Mashev, “Convergence of Rayleigh-Fourier method and rigorous differential method for relief diffraction gratings,” Opt. Acta 33, 593-605 (1986).
[CrossRef]

Raoult, G.

J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11, 235-241 (1980).
[CrossRef]

Varada, G. V.

S. D. Gupta, G. V. Varada, and G. S. Agarwal, “Surface plasmons in two-sided corrugated thin films,” Phys. Rev. B 36, 6331-6335 (1987).
[CrossRef]

Wirgin, A.

A. Wirgin, “On Rayleigh's theory of partially reflecting gratings,” Opt. Acta 28, 1377-1404 (1981).
[CrossRef]

A. Wirgin, “On Rayleigh's theory of sinusoidal diffraction gratings,” Opt. Acta 27, 1671-1692 (1980).
[CrossRef]

J. Opt. (Paris)

J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11, 235-241 (1980).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

L. Li, “Justification of matrix truncation in the modal methods of diffraction gratings,” J. Opt. A, Pure Appl. Opt. 1, 531-536 (1999).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Acta

A. Wirgin, “On Rayleigh's theory of sinusoidal diffraction gratings,” Opt. Acta 27, 1671-1692 (1980).
[CrossRef]

A. Wirgin, “On Rayleigh's theory of partially reflecting gratings,” Opt. Acta 28, 1377-1404 (1981).
[CrossRef]

E. Popov and L. Mashev, “Convergence of Rayleigh-Fourier method and rigorous differential method for relief diffraction gratings,” Opt. Acta 33, 593-605 (1986).
[CrossRef]

E. Popov and L. Mashev, “Convergence of Rayleigh-Fourier method and rigorous differential method for relief diffraction gratings--nonsinusoidal profile,” Opt. Acta 34, 155-158 (1987).

Phys. Rev. B

S. D. Gupta, G. V. Varada, and G. S. Agarwal, “Surface plasmons in two-sided corrugated thin films,” Phys. Rev. B 36, 6331-6335 (1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics