Abstract

This study deals with effects on the interference signal caused by axial, transverse, and oblique motion in spectrometer-based Fourier-domain optical coherence tomography (FD OCT). Two different systems are compared—one with a global shutter line detector and the other with a rolling shutter. We present theoretical and experimental investigations of motion artifacts. Regarding axial motion, fringe washout is observed in both systems, and an additional Doppler frequency shift is seen in the system using a rolling shutter. In addition, both systems show the same SNR decrease as a result of a transversely and obliquely moving sample. The possibility of flow measurement by using the decrease in signal power was demonstrated by imaging 1% Intralipid emulsion flowing through a glass capillary. This research provides an understanding of the SNR degradation caused by sample motion and demonstrates the importance of fast data acquisition in medical imaging.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [Crossref] [PubMed]
  2. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970-972 (1995).
    [Crossref] [PubMed]
  3. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131-1137 (2005).
    [Crossref] [PubMed]
  4. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts,” Opt. Express 12, 5614-5624 (2004).
    [Crossref] [PubMed]
  5. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express 15, 16922-16932 (2007).
    [Crossref] [PubMed]
  6. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977-2998 (2004).
    [Crossref] [PubMed]
  7. G. Haeusler and M. W. Lindner, “Coherence radar and spectral radar--new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
    [Crossref]
  8. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
    [Crossref]
  9. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457-463 (2002).
    [Crossref] [PubMed]
  10. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415-1417 (2002).
    [Crossref]
  11. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
    [Crossref] [PubMed]
  12. F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36, 6548-6553 (1997).
    [Crossref]
  13. U. H. P. Haberland, V. Blazek, and H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259-266 (1998).
    [Crossref]
  14. M. Meingast, C. Geyer, and S. Sastry, “Geometric models of rolling-shutter cameras,” presented at the 6th Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras, Beijing, October 21, 2005.
  15. M. Wany and G. P. Israel, “CMOS image sensor with NMOS-only global shutter and enhanced responsivity,” IEEE Trans. Electron Devices 50, 57-62 (2003).
    [Crossref]
  16. O. Ait-Aider, N. Andreff, J. M. Lavest, and P. Martinet, “Exploiting rolling shutter distortions for simultaneous object pose and velocity computation using a single view,” in Fourth IEEE International Conference on Computer Vision Systems (IEEE, 2006), p. 35.
    [Crossref]
  17. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15, 408-422 (2007).
    [Crossref] [PubMed]
  18. J. S. Nelson, K. M. Kelly, Y. H. Zhao, and Z. P. Chen, “Imaging blood flow in human Port-wine stain in situ and in real time using optical Doppler tomography,” Arch. Dermatol. 137, 741-744 (2001).
    [PubMed]
  19. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22, 593-596 (2005).
    [Crossref]

2007 (2)

2005 (2)

2004 (2)

2003 (1)

M. Wany and G. P. Israel, “CMOS image sensor with NMOS-only global shutter and enhanced responsivity,” IEEE Trans. Electron Devices 50, 57-62 (2003).
[Crossref]

2002 (2)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457-463 (2002).
[Crossref] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415-1417 (2002).
[Crossref]

2001 (1)

J. S. Nelson, K. M. Kelly, Y. H. Zhao, and Z. P. Chen, “Imaging blood flow in human Port-wine stain in situ and in real time using optical Doppler tomography,” Arch. Dermatol. 137, 741-744 (2001).
[PubMed]

1998 (2)

U. H. P. Haberland, V. Blazek, and H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259-266 (1998).
[Crossref]

G. Haeusler and M. W. Lindner, “Coherence radar and spectral radar--new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[Crossref]

1997 (2)

1995 (2)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[Crossref]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970-972 (1995).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[Crossref] [PubMed]

Ait-Aider, O.

O. Ait-Aider, N. Andreff, J. M. Lavest, and P. Martinet, “Exploiting rolling shutter distortions for simultaneous object pose and velocity computation using a single view,” in Fourth IEEE International Conference on Computer Vision Systems (IEEE, 2006), p. 35.
[Crossref]

Andreff, N.

O. Ait-Aider, N. Andreff, J. M. Lavest, and P. Martinet, “Exploiting rolling shutter distortions for simultaneous object pose and velocity computation using a single view,” in Fourth IEEE International Conference on Computer Vision Systems (IEEE, 2006), p. 35.
[Crossref]

Bachmann, A. H.

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457-463 (2002).
[Crossref] [PubMed]

Baumann, B.

Blatter, C.

Blazek, V.

U. H. P. Haberland, V. Blazek, and H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259-266 (1998).
[Crossref]

Boppart, S. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970-972 (1995).
[Crossref] [PubMed]

Bouma, B.

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts,” Opt. Express 12, 5614-5624 (2004).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970-972 (1995).
[Crossref] [PubMed]

Bouma, B. E.

Brezinski, M. E.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970-972 (1995).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[Crossref] [PubMed]

Chen, Z. P.

J. S. Nelson, K. M. Kelly, Y. H. Zhao, and Z. P. Chen, “Imaging blood flow in human Port-wine stain in situ and in real time using optical Doppler tomography,” Arch. Dermatol. 137, 741-744 (2001).
[PubMed]

Chinn, S. R.

de Boer, J.

de Boer, J. F.

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[Crossref]

Fercher, A.

Fercher, A. F.

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415-1417 (2002).
[Crossref]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457-463 (2002).
[Crossref] [PubMed]

F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36, 6548-6553 (1997).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970-972 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[Crossref] [PubMed]

Geyer, C.

M. Meingast, C. Geyer, and S. Sastry, “Geometric models of rolling-shutter cameras,” presented at the 6th Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras, Beijing, October 21, 2005.

Götzinger, E.

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[Crossref] [PubMed]

Haberland, U. H. P.

U. H. P. Haberland, V. Blazek, and H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259-266 (1998).
[Crossref]

Haeusler, G.

G. Haeusler and M. W. Lindner, “Coherence radar and spectral radar--new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[Crossref]

Hassler, K.

Hee, M. R.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970-972 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[Crossref] [PubMed]

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[Crossref] [PubMed]

Israel, G. P.

M. Wany and G. P. Israel, “CMOS image sensor with NMOS-only global shutter and enhanced responsivity,” IEEE Trans. Electron Devices 50, 57-62 (2003).
[Crossref]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[Crossref]

Karamata, B.

Kelly, K. M.

J. S. Nelson, K. M. Kelly, Y. H. Zhao, and Z. P. Chen, “Imaging blood flow in human Port-wine stain in situ and in real time using optical Doppler tomography,” Arch. Dermatol. 137, 741-744 (2001).
[PubMed]

Kowalczyk, A.

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415-1417 (2002).
[Crossref]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457-463 (2002).
[Crossref] [PubMed]

Kulhavy, M.

Lasser, T.

Laubscher, M.

Lavest, J. M.

O. Ait-Aider, N. Andreff, J. M. Lavest, and P. Martinet, “Exploiting rolling shutter distortions for simultaneous object pose and velocity computation using a single view,” in Fourth IEEE International Conference on Computer Vision Systems (IEEE, 2006), p. 35.
[Crossref]

Leitgeb, R.

Leitgeb, R. A.

Lexer, F.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[Crossref] [PubMed]

Lindner, M. W.

G. Haeusler and M. W. Lindner, “Coherence radar and spectral radar--new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[Crossref]

Martinet, P.

O. Ait-Aider, N. Andreff, J. M. Lavest, and P. Martinet, “Exploiting rolling shutter distortions for simultaneous object pose and velocity computation using a single view,” in Fourth IEEE International Conference on Computer Vision Systems (IEEE, 2006), p. 35.
[Crossref]

Meingast, M.

M. Meingast, C. Geyer, and S. Sastry, “Geometric models of rolling-shutter cameras,” presented at the 6th Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras, Beijing, October 21, 2005.

Nelson, J. S.

J. S. Nelson, K. M. Kelly, Y. H. Zhao, and Z. P. Chen, “Imaging blood flow in human Port-wine stain in situ and in real time using optical Doppler tomography,” Arch. Dermatol. 137, 741-744 (2001).
[PubMed]

Pircher, M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[Crossref] [PubMed]

Sastry, S.

M. Meingast, C. Geyer, and S. Sastry, “Geometric models of rolling-shutter cameras,” presented at the 6th Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras, Beijing, October 21, 2005.

Sattmann, H.

Schmitt, H. J.

U. H. P. Haberland, V. Blazek, and H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259-266 (1998).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[Crossref] [PubMed]

Southern, J. F.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970-972 (1995).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970-972 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[Crossref] [PubMed]

Tearney, G.

Tearney, G. J.

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977-2998 (2004).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970-972 (1995).
[Crossref] [PubMed]

Villiger, M. L.

Wany, M.

M. Wany and G. P. Israel, “CMOS image sensor with NMOS-only global shutter and enhanced responsivity,” IEEE Trans. Electron Devices 50, 57-62 (2003).
[Crossref]

Wojtkowski, M.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457-463 (2002).
[Crossref] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415-1417 (2002).
[Crossref]

Yun, S. H.

Zhao, Y. H.

J. S. Nelson, K. M. Kelly, Y. H. Zhao, and Z. P. Chen, “Imaging blood flow in human Port-wine stain in situ and in real time using optical Doppler tomography,” Arch. Dermatol. 137, 741-744 (2001).
[PubMed]

Appl. Opt. (1)

Arch. Dermatol. (1)

J. S. Nelson, K. M. Kelly, Y. H. Zhao, and Z. P. Chen, “Imaging blood flow in human Port-wine stain in situ and in real time using optical Doppler tomography,” Arch. Dermatol. 137, 741-744 (2001).
[PubMed]

IEEE Trans. Electron Devices (1)

M. Wany and G. P. Israel, “CMOS image sensor with NMOS-only global shutter and enhanced responsivity,” IEEE Trans. Electron Devices 50, 57-62 (2003).
[Crossref]

J. Biomed. Opt. (3)

U. H. P. Haberland, V. Blazek, and H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259-266 (1998).
[Crossref]

G. Haeusler and M. W. Lindner, “Coherence radar and spectral radar--new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[Crossref]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457-463 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Med. (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970-972 (1995).
[Crossref] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[Crossref] [PubMed]

Other (2)

M. Meingast, C. Geyer, and S. Sastry, “Geometric models of rolling-shutter cameras,” presented at the 6th Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras, Beijing, October 21, 2005.

O. Ait-Aider, N. Andreff, J. M. Lavest, and P. Martinet, “Exploiting rolling shutter distortions for simultaneous object pose and velocity computation using a single view,” in Fourth IEEE International Conference on Computer Vision Systems (IEEE, 2006), p. 35.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Principle of the FD OCT with spectrometer and the 3D scanner head, as well as the data processing is shown. (I, intensity; FFT, fast Fourier transformation; z, depth)

Fig. 2
Fig. 2

M-mode images (only 500 of a total of 1008 A-scans) of the gold foil fixed on the sinusoidally moving speaker ( f LS = 5 , 10 , 50 , 100 Hz ; A pp = 70 μ m ) acquired with system A ( f A - scan = 1.2 kHz ) are shown. The framed parts on the right-hand sides of the two bottom rows show enlarged views of the corresponding areas on the left.

Fig. 3
Fig. 3

Signal power washout of each A-scan is shown theoretically [solid curve, Eq. (3)] and experimentally (dashed curve) at f LS = 5 Hz , A pp = 70 μ m , and f A - scan = 1.2 kHz for system A.

Fig. 4
Fig. 4

M-mode images (only 500 of a total of 1008 A-scans) were acquired with system B at f LS = 5 , 10 , 50 , 100 Hz , A pp = 70 μ m and f A - scan = 1.25 kHz . The zoom views on the right show the increased amplitude at high f LS and a phase shift between peak of movement and maximum intensity.

Fig. 5
Fig. 5

Amplitude increase factor Δ is presented as a function of f LS theoretically [Eq. (6)] and experimentally.

Fig. 6
Fig. 6

Setup for the measurements of a transversely moved sample, e.g., a microscope slide, is presented. The 2D scanner head is positioned orthogonally to the sample mounted on the turntable, which is activated externally with a rubber tire fixed on the axis of the motor.

Fig. 7
Fig. 7

SNR decrease (in dB) due to transverse motion is measured as a function of Δ x w 0 . The solid curve consists two superimposed (or nearly so) curves, one for theoretical SNR drop and one for the fitting according to Eq. (10). (a) Aluminium foil, α = 0.51 , (b) paper, α = 0.48 , (c) Intralipid emulsion, α = 0.48 .

Fig. 8
Fig. 8

SNR decrease (in dB) of the transversely moving microscope slide simulated as a function of Δ x w 0 . As in Fig. 7, the solid curve comprises the theoretical SNR drop and the fitting corresponding to Eq. (10) overlapping. (a) System A with f A - scan = 1.49 kHz , α = 0.5 ; (b) system B with f A - scan = 1.25 kHz , α = 0.48 .

Fig. 9
Fig. 9

(a) Obliquely incident sample beam is moved transversely relative to the sample. The angle of incidence of the beam is β. (b) The drawing shows the axial and transverse velocity components of the sample ( v z , v x ) in the case of an oblique sample beam.

Fig. 10
Fig. 10

SNR decrease (in dB) of obliquely moving samples with different angles of incidence β ranging from 0° to 20° is simulated for system A with f A - scan of 1.49 kHz . The simulation corresponds to the numerical solution of the integral in Eqs. (11, 12).

Fig. 11
Fig. 11

Contribution of the scatterers passing through the sample beam to the backscattering signal is simulated for system A with f A - scan of 1.49 kHz . The area under all curves is normalized to one. The setting parameters are β = 0 ° to 10°: (a) v = 10 mm s and (b) v = 50 mm s . The axis label δ x denotes the position of the scatterer in the middle of the integration time T A - scan .

Fig. 12
Fig. 12

SNR decrease (in dB) arising from the obliquely moving microscope slide with β = 5 ° is presented as a function of the velocity (dots). (a) The results for system A with f A - scan = 1.49 kHz are shown. The upper solid curve represents the SNR decrease for transverse velocity component v x corresponding to Eq. (10). The darker sinusoidal curve describes the SNR attenuation for axial velocity component v z corresponding to Eq. (3). The sum of SNR decreases for axial and transverse motion is shown by the lighter sinusoidal curve. (b) The measurement results for system B with f A - scan = 1.25 kHz are demonstrated. In (a) and (b) the curve through the dots stands for the simulated theoretical SNR drop corresponding to the numerically solved integral in Eqs. (11, 12) with β = 5 ° .

Fig. 13
Fig. 13

SNR decrease (in dB) of the microscope slide ( β = 10.4 ° ) was measured as a function of the velocity detected by system A at f A - scan of 1.49 kHz . The solid curve represents the simulated theoretical SNR decrease corresponding to the numerical solution of the integral in Eqs. (11, 12) with β = 10.4 ° .

Fig. 14
Fig. 14

M-mode images (only 400 of a total of 800 A-scans) show the middle position of the capillary at different mean velocities of the flowing Intralipid emulsion at angles β of (a) 3° and (b) 6.5°. With increasing velocity, a reduction of the signal power of the flowing Intralipid occurs. A constant signal intensity in the peripheral area of the Intralipid flow can be seen in (b).

Fig. 15
Fig. 15

SNR decrease caused by the flowing Intralipid is represented as a function of the radial position r inside the glass capillary. The set mean velocities ranged from 14.8 to 246.2 mm s for β = 3 ° (a) and from 9.8 to 68.9 mm s for β = 6.5 ° (b). At β = 6.5 ° [in (b)] plateaus in SNR decrease are recognizable for v mean of 24.6 to 34.5 mm s and v mean of 49.2 mm s compared with β = 3 ° [in (a)].

Fig. 16
Fig. 16

SNR attenuation of the Intralipid flowing through the capillary is shown against the theoretically calculated velocity for (a) β = 3 ° and (b) β = 6.5 ° . The solid curve represents the simulated theoretical SNR decrease corresponding to the numerical solution of the integral in Eqs. (11, 12) for w 0 = 7.3 μ m . In (b) two cycles of oscillation are seen because of the higher axial velocity component compared with (a).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

i ( k ) = c Re { r ( x , y , z ) g ( x x b , y y b , z z b ) exp [ i 2 k ( z z b ) ] d x d y d z } ,
N ( k ) = c Re { T A - scan 2 T A - scan 2 r ( x , y , z ) g ( x x b , y y b ) exp [ i 2 k ( z z b ) ] d x d y d z d t } .
SNR ( Δ z ) = SNR ( Δ z = 0 ) Γ Γ = sin 2 ( k 0 Δ z ) ( k 0 Δ z ) 2 , Γ = [ 0 , 1 ] .
z ( t ) = z 0 ( t ) + z D ,
z D = k 0 Δ k Δ z ,
Δ = z ̂ ( t ) z ̂ 0 ( t ) = 1 + ( k 0 Δ k ω LS T A - scan ) 2 ,
φ = arctan ( k 0 Δ k ω LS T A - scan ) .
N ( k ) = c T A - scan r ( x , y ) G ( x x b , y y b ) exp [ i 2 k ( z z b ) ] d x d y ,
G ( x , y ) = 1 T A - scan T A - scan 2 T A - scan 2 g ( x + v x t , y ) d t .
S N R decrease ( d B ) 10 log ( 1 + 0.5 Δ x 2 w 0 2 ) α ,
N ( k ) = c T A - scan r ( x , y ) G ( x x b , y y b ) exp [ i 2 k ( z z b ) ] d x d y ,
G ( x , y ) = 1 T A - scan T A - scan 2 T A - scan 2 g ( x + v x t , y ) exp [ i 2 k v z t ] d t .

Metrics