Abstract

A theoretical study on the sensitivity of the resonant wavelength of long-period waveguide gratings (LPWGs) to temperature and pressure is reported. Starting with the phase-matching condition of the LPWG, general expressions for the temperature and pressure sensitivities are derived. The temperature sensitivity considers the thermo-optic and thermal expansion effects, and the pressure sensitivity takes into account the elasto-optic and elastic deformation effects of the materials involved, as well as the modal dispersion effect. Focusing on the extensively studied glass and polymer waveguides, the contributions of these effects to the temperature or pressure sensitivity were roughly evaluated and illustrated in the form of histograms in order to show the roles of these effects straightforwardly. The results show that a LPWG based on a polymer waveguide is preferred to that based on a glass waveguide for obtaining high temperature or pressure sensitivity. The temperature sensitivity is dominated by the modal dispersion effect and the difference between the thermo-optic coefficients of the waveguide and the cover layer materials, while the thermal expansion effects make only a minor contribution to the sensitivity for the cases of both glass and polymer waveguides. The pressure sensitivity is dominated by the modal dispersion effect and the difference between the elasto-optic coefficients of the channel waveguide and the cover layer materials. In particular, in the case of the polymer LPWG the elastic deformation effects of the waveguide and grating materials make a moderate contribution to the pressure sensitivity and cannot be ignored. The minor contributions from the thermal expansion effects or the elastic effects may play a role in designing a temperature- or a pressure-insensitive LPWG device. Finally, the possibility that the waveguide loss affects the LPWG temperature/pressure sensitivity is discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  2. A. M. Vengsarkar, P. J. Lemaire, G. Jacobovitz-Veselka, V. Bhatia, and J. B. Judkins, “Long-period fiber gratings as gain-flattening and laser stabilizing devices,” in Proceedings of the 10th International Conference on Integrated Optics and Optical Communication (IOOC'95) (The Chinese University Press, 1995), postdeadline paper PD1-2.
    [PubMed]
  3. X. J. Gu, “Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings,” Opt. Lett. 23, 509-510 (1998).
    [CrossRef]
  4. K. O. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
    [CrossRef]
  5. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692-694 (1996).
    [CrossRef] [PubMed]
  6. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606-1612 (1998).
    [CrossRef]
  7. Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, “Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photonics Technol. Lett. 12, 531-533 (2000).
    [CrossRef]
  8. L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
    [CrossRef]
  9. C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19, 1159-1168 (2001).
    [CrossRef]
  10. Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661-663 (1999).
    [CrossRef]
  11. B. H. Lee, Y. Liu, S. B. Lee, S. S. Choi, and J. N. Jang, “Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index,” Opt. Lett. 22, 1769-1771 (1997).
    [CrossRef]
  12. V. Grubsky and J. Feinberg, “Long-period fiber gratings with variable coupling for real-time sensing applications,” Opt. Lett. 25, 203-205 (2000).
    [CrossRef]
  13. S. Khaliq, S. W. James, and R. P. Tatam, “Fiber-optic liquid-level sensor using a long-period grating,” Opt. Lett. 26, 1224-1226 (2001).
    [CrossRef]
  14. H. C. Tsoi, W. H. Wong, and E. Y. B. Pun, “Polymeric long-period waveguide gratings,” IEEE Photonics Technol. Lett. 15, 721-723 (2003).
    [CrossRef]
  15. K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15, 1094-1096 (2003).
    [CrossRef]
  16. H. Y. Tang, W. H. Wong, and E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B: Lasers Opt. 79, 95-98 (2004).
    [CrossRef]
  17. K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and L. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40, 422-423 (2004).
    [CrossRef]
  18. M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, “Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings,” Opt. Commun. 233, 97-106 (2004).
    [CrossRef]
  19. K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photonics Technol. Lett. 17, 594-596 (2005).
    [CrossRef]
  20. M. S. Kwon and S. Y. Shin, “Characteristics of polymer waveguide notch filters using thermooptic long-period gratings,” IEEE J. Sel. Top. Quantum Electron. 11, 190-195 (2005).
    [CrossRef]
  21. M. S. Kwon and S. Y. Shin, “Tunable polymer waveguide notch filter using a thermooptic long-period grating,” IEEE Photonics Technol. Lett. 17, 145-147 (2005).
    [CrossRef]
  22. A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photonics Technol. Lett. 17, 2595-2597 (2005).
    [CrossRef]
  23. Q. Liu, K. S. Chiang, and K. P. Lor, “Tailoring the transmission characteristics of polymer long-period waveguide gratings by UV irradiation,” IEEE Photonics Technol. Lett. 17, 2340-2342 (2005).
    [CrossRef]
  24. Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86, 241115 (2005).
    [CrossRef]
  25. Y. M. Chu, K. S. Chiang, and Q. Liu, “Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings,” Appl. Opt. 45, 2755-2760 (2006).
    [CrossRef] [PubMed]
  26. K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide,” IEEE Photonics Technol. Lett. 18, 1109-1111 (2006).
    [CrossRef]
  27. Q. Liu, K. S. Chiang, and L. P. Lor, “Condition for the realization of a temperature-insensitive long-period waveguide grating,” Opt. Lett. 31, 2716-2718 (2006).
    [CrossRef] [PubMed]
  28. X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20, 255-266 (2002).
    [CrossRef]
  29. M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings,” Opt. Commun. 208, 321-327 (2002).
    [CrossRef]
  30. V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4, 457-466 (1999).
    [CrossRef] [PubMed]
  31. X. Daxhelet and M. Kulishov, “Theory and practice of long-period gratings: when a loss becomes a gain,” Opt. Lett. 28, 686-688 (2003).
    [CrossRef] [PubMed]
  32. M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, “Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40, 1715-1724 (2004).
    [CrossRef]

2006 (3)

2005 (6)

K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photonics Technol. Lett. 17, 594-596 (2005).
[CrossRef]

M. S. Kwon and S. Y. Shin, “Characteristics of polymer waveguide notch filters using thermooptic long-period gratings,” IEEE J. Sel. Top. Quantum Electron. 11, 190-195 (2005).
[CrossRef]

M. S. Kwon and S. Y. Shin, “Tunable polymer waveguide notch filter using a thermooptic long-period grating,” IEEE Photonics Technol. Lett. 17, 145-147 (2005).
[CrossRef]

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photonics Technol. Lett. 17, 2595-2597 (2005).
[CrossRef]

Q. Liu, K. S. Chiang, and K. P. Lor, “Tailoring the transmission characteristics of polymer long-period waveguide gratings by UV irradiation,” IEEE Photonics Technol. Lett. 17, 2340-2342 (2005).
[CrossRef]

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

2004 (4)

H. Y. Tang, W. H. Wong, and E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B: Lasers Opt. 79, 95-98 (2004).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and L. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40, 422-423 (2004).
[CrossRef]

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, “Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings,” Opt. Commun. 233, 97-106 (2004).
[CrossRef]

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, “Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40, 1715-1724 (2004).
[CrossRef]

2003 (3)

X. Daxhelet and M. Kulishov, “Theory and practice of long-period gratings: when a loss becomes a gain,” Opt. Lett. 28, 686-688 (2003).
[CrossRef] [PubMed]

H. C. Tsoi, W. H. Wong, and E. Y. B. Pun, “Polymeric long-period waveguide gratings,” IEEE Photonics Technol. Lett. 15, 721-723 (2003).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

2002 (2)

X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20, 255-266 (2002).
[CrossRef]

M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings,” Opt. Commun. 208, 321-327 (2002).
[CrossRef]

2001 (2)

2000 (2)

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, “Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photonics Technol. Lett. 12, 531-533 (2000).
[CrossRef]

V. Grubsky and J. Feinberg, “Long-period fiber gratings with variable coupling for real-time sensing applications,” Opt. Lett. 25, 203-205 (2000).
[CrossRef]

1999 (3)

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661-663 (1999).
[CrossRef]

V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4, 457-466 (1999).
[CrossRef] [PubMed]

1998 (2)

1997 (1)

1996 (2)

A. M. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692-694 (1996).
[CrossRef] [PubMed]

1990 (1)

K. O. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

Bennion, I.

X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20, 255-266 (2002).
[CrossRef]

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, “Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photonics Technol. Lett. 12, 531-533 (2000).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661-663 (1999).
[CrossRef]

Bertrand, H.

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, “Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings,” Opt. Commun. 233, 97-106 (2004).
[CrossRef]

Bhatia, V.

V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4, 457-466 (1999).
[CrossRef] [PubMed]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692-694 (1996).
[CrossRef] [PubMed]

A. M. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, G. Jacobovitz-Veselka, V. Bhatia, and J. B. Judkins, “Long-period fiber gratings as gain-flattening and laser stabilizing devices,” in Proceedings of the 10th International Conference on Integrated Optics and Optical Communication (IOOC'95) (The Chinese University Press, 1995), postdeadline paper PD1-2.
[PubMed]

Bilodeau, F.

K. O. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

Bucholtz, F.

Chan, H. P.

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide,” IEEE Photonics Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and L. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40, 422-423 (2004).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Chern, G. W.

Chiang, K. S.

Y. M. Chu, K. S. Chiang, and Q. Liu, “Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings,” Appl. Opt. 45, 2755-2760 (2006).
[CrossRef] [PubMed]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide,” IEEE Photonics Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Q. Liu, K. S. Chiang, and L. P. Lor, “Condition for the realization of a temperature-insensitive long-period waveguide grating,” Opt. Lett. 31, 2716-2718 (2006).
[CrossRef] [PubMed]

K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photonics Technol. Lett. 17, 594-596 (2005).
[CrossRef]

Q. Liu, K. S. Chiang, and K. P. Lor, “Tailoring the transmission characteristics of polymer long-period waveguide gratings by UV irradiation,” IEEE Photonics Technol. Lett. 17, 2340-2342 (2005).
[CrossRef]

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and L. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40, 422-423 (2004).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings,” Opt. Commun. 208, 321-327 (2002).
[CrossRef]

Choi, S. S.

Chow, C. K.

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide,” IEEE Photonics Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and L. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40, 422-423 (2004).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Christophe, M.

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, “Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings,” Opt. Commun. 233, 97-106 (2004).
[CrossRef]

Chu, Y. M.

Y. M. Chu, K. S. Chiang, and Q. Liu, “Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings,” Appl. Opt. 45, 2755-2760 (2006).
[CrossRef] [PubMed]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Cyril, G.

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, “Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings,” Opt. Commun. 233, 97-106 (2004).
[CrossRef]

Daxhelet, X.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, “Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40, 1715-1724 (2004).
[CrossRef]

X. Daxhelet and M. Kulishov, “Theory and practice of long-period gratings: when a loss becomes a gain,” Opt. Lett. 28, 686-688 (2003).
[CrossRef] [PubMed]

Erdogan, T.

A. M. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Everall, L.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

Feinberg, J.

Grubsky, V.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, “Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40, 1715-1724 (2004).
[CrossRef]

V. Grubsky and J. Feinberg, “Long-period fiber gratings with variable coupling for real-time sensing applications,” Opt. Lett. 25, 203-205 (2000).
[CrossRef]

Gu, X. J.

Hill, K. O.

K. O. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

Jacobovitz-Veselka, G.

A. M. Vengsarkar, P. J. Lemaire, G. Jacobovitz-Veselka, V. Bhatia, and J. B. Judkins, “Long-period fiber gratings as gain-flattening and laser stabilizing devices,” in Proceedings of the 10th International Conference on Integrated Optics and Optical Communication (IOOC'95) (The Chinese University Press, 1995), postdeadline paper PD1-2.
[PubMed]

Jacquin, O.

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, “Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings,” Opt. Commun. 233, 97-106 (2004).
[CrossRef]

James, S. W.

Jang, J. N.

Johnson, D. C.

K. O. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

Judkins, J. B.

A. M. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, G. Jacobovitz-Veselka, V. Bhatia, and J. B. Judkins, “Long-period fiber gratings as gain-flattening and laser stabilizing devices,” in Proceedings of the 10th International Conference on Integrated Optics and Optical Communication (IOOC'95) (The Chinese University Press, 1995), postdeadline paper PD1-2.
[PubMed]

Kersey, A. D.

Khaliq, S.

Kostovski, G.

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photonics Technol. Lett. 17, 2595-2597 (2005).
[CrossRef]

Kulishov, M.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, “Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40, 1715-1724 (2004).
[CrossRef]

X. Daxhelet and M. Kulishov, “Theory and practice of long-period gratings: when a loss becomes a gain,” Opt. Lett. 28, 686-688 (2003).
[CrossRef] [PubMed]

Kwon, M. S.

M. S. Kwon and S. Y. Shin, “Characteristics of polymer waveguide notch filters using thermooptic long-period gratings,” IEEE J. Sel. Top. Quantum Electron. 11, 190-195 (2005).
[CrossRef]

M. S. Kwon and S. Y. Shin, “Tunable polymer waveguide notch filter using a thermooptic long-period grating,” IEEE Photonics Technol. Lett. 17, 145-147 (2005).
[CrossRef]

Laurent, C.

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, “Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings,” Opt. Commun. 233, 97-106 (2004).
[CrossRef]

Lee, B. H.

Lee, S. B.

Lemaire, P. J.

A. M. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, G. Jacobovitz-Veselka, V. Bhatia, and J. B. Judkins, “Long-period fiber gratings as gain-flattening and laser stabilizing devices,” in Proceedings of the 10th International Conference on Integrated Optics and Optical Communication (IOOC'95) (The Chinese University Press, 1995), postdeadline paper PD1-2.
[PubMed]

Lin, C. Y.

Liu, Q.

Q. Liu, K. S. Chiang, and L. P. Lor, “Condition for the realization of a temperature-insensitive long-period waveguide grating,” Opt. Lett. 31, 2716-2718 (2006).
[CrossRef] [PubMed]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide,” IEEE Photonics Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Y. M. Chu, K. S. Chiang, and Q. Liu, “Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings,” Appl. Opt. 45, 2755-2760 (2006).
[CrossRef] [PubMed]

K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photonics Technol. Lett. 17, 594-596 (2005).
[CrossRef]

Q. Liu, K. S. Chiang, and K. P. Lor, “Tailoring the transmission characteristics of polymer long-period waveguide gratings by UV irradiation,” IEEE Photonics Technol. Lett. 17, 2340-2342 (2005).
[CrossRef]

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and L. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40, 422-423 (2004).
[CrossRef]

Liu, Y.

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, “Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photonics Technol. Lett. 12, 531-533 (2000).
[CrossRef]

Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661-663 (1999).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

B. H. Lee, Y. Liu, S. B. Lee, S. S. Choi, and J. N. Jang, “Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index,” Opt. Lett. 22, 1769-1771 (1997).
[CrossRef]

Lor, K. P.

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide,” IEEE Photonics Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Q. Liu, K. S. Chiang, and K. P. Lor, “Tailoring the transmission characteristics of polymer long-period waveguide gratings by UV irradiation,” IEEE Photonics Technol. Lett. 17, 2340-2342 (2005).
[CrossRef]

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photonics Technol. Lett. 17, 594-596 (2005).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Lor, L. P.

Q. Liu, K. S. Chiang, and L. P. Lor, “Condition for the realization of a temperature-insensitive long-period waveguide grating,” Opt. Lett. 31, 2716-2718 (2006).
[CrossRef] [PubMed]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and L. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40, 422-423 (2004).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

Mitchell, A.

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photonics Technol. Lett. 17, 2595-2597 (2005).
[CrossRef]

Ng, M. N.

M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings,” Opt. Commun. 208, 321-327 (2002).
[CrossRef]

Patrick, H. J.

Perentos, A.

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photonics Technol. Lett. 17, 2595-2597 (2005).
[CrossRef]

Plant, D. V.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, “Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40, 1715-1724 (2004).
[CrossRef]

Pun, E. Y. B.

H. Y. Tang, W. H. Wong, and E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B: Lasers Opt. 79, 95-98 (2004).
[CrossRef]

H. C. Tsoi, W. H. Wong, and E. Y. B. Pun, “Polymeric long-period waveguide gratings,” IEEE Photonics Technol. Lett. 15, 721-723 (2003).
[CrossRef]

Rastogi, V.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Schwartz, J.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, “Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40, 1715-1724 (2004).
[CrossRef]

Shin, S. Y.

M. S. Kwon and S. Y. Shin, “Tunable polymer waveguide notch filter using a thermooptic long-period grating,” IEEE Photonics Technol. Lett. 17, 145-147 (2005).
[CrossRef]

M. S. Kwon and S. Y. Shin, “Characteristics of polymer waveguide notch filters using thermooptic long-period gratings,” IEEE J. Sel. Top. Quantum Electron. 11, 190-195 (2005).
[CrossRef]

Shu, X. W.

Sipe, J. E.

A. M. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Skinner, I.

K. O. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

Tang, H. Y.

H. Y. Tang, W. H. Wong, and E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B: Lasers Opt. 79, 95-98 (2004).
[CrossRef]

Tatam, R. P.

Tsoi, H. C.

H. C. Tsoi, W. H. Wong, and E. Y. B. Pun, “Polymeric long-period waveguide gratings,” IEEE Photonics Technol. Lett. 15, 721-723 (2003).
[CrossRef]

Vengsakar, A. M.

A. M. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Vengsarkar, A. M.

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692-694 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, G. Jacobovitz-Veselka, V. Bhatia, and J. B. Judkins, “Long-period fiber gratings as gain-flattening and laser stabilizing devices,” in Proceedings of the 10th International Conference on Integrated Optics and Optical Communication (IOOC'95) (The Chinese University Press, 1995), postdeadline paper PD1-2.
[PubMed]

Vineberg, K.

K. O. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

Wang, L. A.

Williams, J. A. R.

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, “Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photonics Technol. Lett. 12, 531-533 (2000).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

Wong, W. H.

H. Y. Tang, W. H. Wong, and E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B: Lasers Opt. 79, 95-98 (2004).
[CrossRef]

H. C. Tsoi, W. H. Wong, and E. Y. B. Pun, “Polymeric long-period waveguide gratings,” IEEE Photonics Technol. Lett. 15, 721-723 (2003).
[CrossRef]

Zhang, L.

X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20, 255-266 (2002).
[CrossRef]

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, “Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photonics Technol. Lett. 12, 531-533 (2000).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661-663 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

H. Y. Tang, W. H. Wong, and E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B: Lasers Opt. 79, 95-98 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

Electron. Lett. (3)

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and L. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40, 422-423 (2004).
[CrossRef]

Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661-663 (1999).
[CrossRef]

K. O. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, “Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40, 1715-1724 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

M. S. Kwon and S. Y. Shin, “Characteristics of polymer waveguide notch filters using thermooptic long-period gratings,” IEEE J. Sel. Top. Quantum Electron. 11, 190-195 (2005).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (8)

H. C. Tsoi, W. H. Wong, and E. Y. B. Pun, “Polymeric long-period waveguide gratings,” IEEE Photonics Technol. Lett. 15, 721-723 (2003).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

M. S. Kwon and S. Y. Shin, “Tunable polymer waveguide notch filter using a thermooptic long-period grating,” IEEE Photonics Technol. Lett. 17, 145-147 (2005).
[CrossRef]

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photonics Technol. Lett. 17, 2595-2597 (2005).
[CrossRef]

Q. Liu, K. S. Chiang, and K. P. Lor, “Tailoring the transmission characteristics of polymer long-period waveguide gratings by UV irradiation,” IEEE Photonics Technol. Lett. 17, 2340-2342 (2005).
[CrossRef]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide,” IEEE Photonics Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, “Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photonics Technol. Lett. 12, 531-533 (2000).
[CrossRef]

K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photonics Technol. Lett. 17, 594-596 (2005).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Commun. (2)

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, “Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings,” Opt. Commun. 233, 97-106 (2004).
[CrossRef]

M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings,” Opt. Commun. 208, 321-327 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

Other (1)

A. M. Vengsarkar, P. J. Lemaire, G. Jacobovitz-Veselka, V. Bhatia, and J. B. Judkins, “Long-period fiber gratings as gain-flattening and laser stabilizing devices,” in Proceedings of the 10th International Conference on Integrated Optics and Optical Communication (IOOC'95) (The Chinese University Press, 1995), postdeadline paper PD1-2.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic structure of a strip-raised channel waveguide with corrugated LPG. (a) Cross section, (b) side view.

Fig. 2
Fig. 2

Comparison of histograms of Δ N k for a LPG in/on a strip-raised channel waveguide with n co = 1.55 , n cl = 1.484 , n s = 1.444 , n ex = 1.0 , H co = 3.0 μ m , H cl = 6.5 μ m , W co = 4.0 μ m , λ 0 = 1550 nm .

Fig. 3
Fig. 3

Comparison of histograms of factors influencing temperature sensitivity for a LPG on (a) a glass and (b) a polymer waveguide. In the calculations, the TOC (TEC) is taken as 5 × 10 6 ° C 1 ( 7.5 × 10 6 ° C 1 ) and 1.3 × 10 4 ° C 1 ( 0.85 × 10 4 ° C 1 ) for glass and polymer, respectively.

Fig. 4
Fig. 4

Comparison of histograms of factors influencing pressure sensitivity for a LPG on (a) a glass and (b) a polymer waveguide. In the calculations, the parameters m i , E y , i and E x , i are taken as 1.5 × 10 11 Pa 1 , 1.5 × 10 11 Pa 1 , and 3 × 10 12 Pa 1 , respectively, for glass material, and 6.5 × 10 11 Pa 1 , 4 × 10 10 Pa 1 , and 1.5 × 10 10 Pa 1 , respectively, for polymer material.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

q λ 0 = Λ ( N 00 N m n ) ,
q d λ 0 d T = Λ ( d N 00 d T d N m n d T ) + ( N 00 N m n ) d Λ d T ,
q d λ 0 d T = Λ ( A T + B T + C T ) + D T ,
A T = C co ( N 00 n co N m n n co ) + C cl ( N 00 n cl N m n n cl ) + C s ( N 00 n s N m n n s ) + C ex ( N 00 n ex N m n n ex ) ,
B T = α co ( N 00 ε co N m n ε co ) + α cl ( N 00 ε cl N m n ε cl ) + α co ( N 00 ε W N m n ε W ) ,
C T = ( N 00 λ N m n λ ) d λ 0 d T ,
D T = α c o ( N 00 N m n ) Λ ,
d λ 0 d T = γ Λ ( A T + B T + D T ) ,
γ = 1 q Λ ( N 00 λ N m n λ ) .
d λ 0 d T γ Λ ( C c o C c l ) ( d N 00 d n co d N m n d n co ) .
A T i = C i ( N 00 n i N m n n i ) = C i Δ N n i ( i = co , cl , s , ex ) ,
B T i = α i ( N 00 ε i N m n ε i ) = α i Δ N H i ( i = co , cl ) ,
B T W = α i ( N 00 ε W N m n ε W ) = α i Δ N W ( i = co ) ,
D T = α i ( N 00 N m n ) = α i Δ N N ( i = co ) ,
q d λ 0 d p = Λ ( d N 00 d p d N m n d p ) + ( N 00 N m n ) d Λ d p ,
d λ 0 d p = γ Λ ( A P + B P + D P ) ,
A P = 1 2 n c o 3 σ c o ( N 00 n c o N m n n c o ) 1 2 n c l 3 σ c l ( N 00 n c l N m n n c l ) 1 2 n s 3 σ s ( N 00 n s N m n n s ) 1 2 n e x 3 σ e x ( N 00 n e x N m n n e x ) ,
B P = 1 E c o ( N 00 ε c o N m n ε c o ) + 1 E c l ( N 00 ε c l N m n ε c l ) + μ c o E c o ( N 00 ε W N m n ε W ) ,
D P = μ c o E c o ( N 00 N m n ) .
A p i = 1 2 n i 3 σ i ( N 00 n i N m n n i ) = m i Δ N n i
( i = co , cl , s , ex ) ,
B p i = 1 E i ( N 00 ε i N m n ε i ) = E y , i Δ N H i ( i = co , cl ) ,
B p W = μ i E i ( N 00 ε W N m n ε W ) = E x , i Δ N W ( i = co ) ,
D p = μ co E co ( N 00 N m n ) = E x , co Δ N N .
q λ 0 = Λ [ Re ( N 00 ) Re ( N m n ) ] ,

Metrics