Abstract

We investigate the ultraslow motion of polychromatic Bessel beams in unbounded, nondispersive media. Control over the group velocity is exercised by means of the angular dispersion of pulsed Bessel beams of invariant transverse spatial frequency, which spontaneously emerge from near-field generators. Temporal dynamics in transients and resonances over homogeneous delay lines (dielectric slabs) are also examined.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, Slow and Fast Light, Progress in Optics, Vol. 43 of E.Wolf, ed. (Elsevier, 2002), chap. 6, pp. 497-530.
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metrespersecond in an ultracold atomic gas,” Nature 397, 594-598 (1999).
    [CrossRef]
  3. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273-276 (2001).
    [CrossRef] [PubMed]
  4. M. Artoni, G. C. La Rocca, F. S. Cataliotti, and F. Bassani, “Highly anomalous group velocity of light in ultracold rubidium gases,” Phys. Rev. A 63, 023805 (2001).
    [CrossRef]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
    [CrossRef] [PubMed]
  6. J. A. Stratton, Electromagnetic Theory (Mcgraw-Hill College, 1941).
  7. M. Zamboni-Rached, K. Z. Nóbrega, E. Recami, and H. E. Hernández-Figueroa, “Superluminal X-shaped beams propagating without distortion along a coaxial guide,” Phys. Rev. E 66, 046617 (2002).
    [CrossRef]
  8. M. Zamboni-Rached, F. Fontana, and E. Recami, “Superluminal localized solutions to Maxwell equations propagating along a waveguide: the finite-energy case,” Phys. Rev. E 67, 036620 (2003).
    [CrossRef]
  9. L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).
  10. T. M. Wallett and A. H. Qureshi, Review of Slow-Wave Structures, NASA Technical Memorandum 106639 (NASA, 1994), pp. 1-28.
  11. S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Microwave Opt. Technol. Lett. 20, 17-21 (1999).
    [CrossRef]
  12. H. Altug and J. Vucković, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
    [CrossRef]
  13. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  14. J. G. Rivas, A. F. Benet, J. Niehusmann, P. H. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71, 155110 (2005).
    [CrossRef]
  15. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145-7159 (2005).
    [CrossRef] [PubMed]
  16. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444-9450 (2006).
    [CrossRef] [PubMed]
  17. A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14, 44-48 (2003).
    [CrossRef]
  18. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499-1501 (1987).
    [CrossRef] [PubMed]
  19. J. Lu and J. F. Greenleaf, “Nondiffracting X waves--exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19-31 (1992).
    [CrossRef] [PubMed]
  20. P. Saari, “Localized waves in femtosecond optics” (2003), personal communication.
  21. S. Licul, “On the generation and applications of localized waves,” M.Sc. thesis (Virginia Polytechnic Institute, 2001).
  22. H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Localized Waves (Wiley, 2008).
    [CrossRef]
  23. M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
    [CrossRef]
  24. C. J. Zapata-Rodríguez and M. A. Porras, “X-wave bullets with negative group velocity in vacuum,” Opt. Lett. 31, 3532-3534 (2006).
    [CrossRef] [PubMed]
  25. I. Alexeev, K. Kim, and H. M. Milchberg, “Measurement of the superluminal group velocity of an ultrashort Bessel beam pulse,” Phys. Rev. Lett. 88, 073901 (2002).
    [CrossRef] [PubMed]
  26. E. Recami, M. Zamboni-Rached, K. Z. Nóbrega, C. A. Dartora, and H. E. Hernández, “On the localized superluminal solutions to the Maxwell equations,” IEEE J. Sel. Top. Quantum Electron. 9, 59-73 (2003).
    [CrossRef]
  27. P. Saari and K. Reivelt, “Evidence of X-shaped propagation-invariant localized light waves,” Phys. Rev. Lett. 79, 4135-4138 (1997).
    [CrossRef]
  28. H. Sõnajalg, M. Rätsep, and P. Saari, “Demonstration of the Bessel-X pulse propagating with strong lateral and longitudinal localization in a dispersive medium,” Opt. Lett. 22, 310-312 (1997).
    [CrossRef] [PubMed]
  29. M. A. Porras, “Diffraction-free and dispersion-free pulsed beam propagation in dispersive media,” Opt. Lett. 26, 1364-1366 (2001).
    [CrossRef]
  30. Z. Liu and D. Fan, “Propagation of pulsed zeroth-order Bessel beams,” J. Mod. Opt. 45, 17-22 (1998).
    [CrossRef]
  31. C. J. R. Sheppard, “Generalized Bessel pulse beams,” J. Opt. Soc. Am. A 19, 2218-2222 (2002).
    [CrossRef]
  32. M. Zamboni-Rached and E. Recami, “Subluminal wave bullets: exact localized subluminal solutions to the wave equations,” Phys. Rev. A 77, 033824 (2008).
    [CrossRef]
  33. M. Zamboni-Rached, “Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: frozen waves,” Opt. Express 12, 4001-4006 (2004).
    [CrossRef] [PubMed]
  34. C. J. R. Sheppard, “Bessel pulse beams and focus wave modes,” J. Opt. Soc. Am. A 18, 2594-2600 (2001).
    [CrossRef]
  35. B. Lü and Z. Liu, “Propagation properties of ultrashort pulsed Bessel beams in dispersive media,” J. Opt. Soc. Am. A 20, 582-587 (2003).
    [CrossRef]
  36. A. M. Shaarawi, “Comparison of two localized wave fields generated from dynamic apertures,” J. Opt. Soc. Am. A 14, 1804-1816 (1997).
    [CrossRef]
  37. C. J. Zapata-Rodríguez and M. T. Caballero, “Isotropic compensation of diffraction-driven angular dispersion,” Opt. Lett. 32, 2472-2474 (2007).
    [CrossRef] [PubMed]
  38. C. J. Zapata-Rodríguez, M. T. Caballero, and J. J. Miret, “Angular spectrum of diffracted wavefields with apochromatic correction,” Opt. Lett. 331753-1755 (2008).
    [CrossRef] [PubMed]
  39. C. J. Zapata-Rodríguez, “Focal waveforms with tunable carrier frequency using dispersive aperturing,” Opt. Commun. 281, 4840-4843 (2008).
    [CrossRef]
  40. L. Niggl, T. Lanzl, and M. Maier, “Properties of Bessel beams generated by periodic gratings of circular symmetry,” J. Opt. Soc. Am. A 14, 27-33 (1997).
    [CrossRef]
  41. S. Holm, “Bessel and conical beams and approximation with annular arrays,” IEEE Trans. Ultrason., Ferroelect., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 712-718 (1998).
    [CrossRef]
  42. T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921-1923 (1992).
    [CrossRef]
  43. R. H. Jordan and D. G. Hall, “Highly directional surface emission from concentric-circle gratings on planar optical waveguides: the field expansion method,” J. Opt. Soc. Am. A 12, 84-94 (1995).
    [CrossRef]
  44. P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 22, 223902 (2007).
    [CrossRef]
  45. P. L. Greene and D. G. Hall, “Properties and diffraction of vector Bessel-Gauss beams,” J. Opt. Soc. Am. A 15, 3020-3027 (1998).
    [CrossRef]

2008 (3)

M. Zamboni-Rached and E. Recami, “Subluminal wave bullets: exact localized subluminal solutions to the wave equations,” Phys. Rev. A 77, 033824 (2008).
[CrossRef]

C. J. Zapata-Rodríguez, M. T. Caballero, and J. J. Miret, “Angular spectrum of diffracted wavefields with apochromatic correction,” Opt. Lett. 331753-1755 (2008).
[CrossRef] [PubMed]

C. J. Zapata-Rodríguez, “Focal waveforms with tunable carrier frequency using dispersive aperturing,” Opt. Commun. 281, 4840-4843 (2008).
[CrossRef]

2007 (2)

C. J. Zapata-Rodríguez and M. T. Caballero, “Isotropic compensation of diffraction-driven angular dispersion,” Opt. Lett. 32, 2472-2474 (2007).
[CrossRef] [PubMed]

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 22, 223902 (2007).
[CrossRef]

2006 (2)

2005 (4)

H. Altug and J. Vucković, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

J. G. Rivas, A. F. Benet, J. Niehusmann, P. H. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71, 155110 (2005).
[CrossRef]

M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145-7159 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (6)

M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
[CrossRef]

E. Recami, M. Zamboni-Rached, K. Z. Nóbrega, C. A. Dartora, and H. E. Hernández, “On the localized superluminal solutions to the Maxwell equations,” IEEE J. Sel. Top. Quantum Electron. 9, 59-73 (2003).
[CrossRef]

B. Lü and Z. Liu, “Propagation properties of ultrashort pulsed Bessel beams in dispersive media,” J. Opt. Soc. Am. A 20, 582-587 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14, 44-48 (2003).
[CrossRef]

M. Zamboni-Rached, F. Fontana, and E. Recami, “Superluminal localized solutions to Maxwell equations propagating along a waveguide: the finite-energy case,” Phys. Rev. E 67, 036620 (2003).
[CrossRef]

2002 (3)

I. Alexeev, K. Kim, and H. M. Milchberg, “Measurement of the superluminal group velocity of an ultrashort Bessel beam pulse,” Phys. Rev. Lett. 88, 073901 (2002).
[CrossRef] [PubMed]

M. Zamboni-Rached, K. Z. Nóbrega, E. Recami, and H. E. Hernández-Figueroa, “Superluminal X-shaped beams propagating without distortion along a coaxial guide,” Phys. Rev. E 66, 046617 (2002).
[CrossRef]

C. J. R. Sheppard, “Generalized Bessel pulse beams,” J. Opt. Soc. Am. A 19, 2218-2222 (2002).
[CrossRef]

2001 (4)

C. J. R. Sheppard, “Bessel pulse beams and focus wave modes,” J. Opt. Soc. Am. A 18, 2594-2600 (2001).
[CrossRef]

M. A. Porras, “Diffraction-free and dispersion-free pulsed beam propagation in dispersive media,” Opt. Lett. 26, 1364-1366 (2001).
[CrossRef]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

M. Artoni, G. C. La Rocca, F. S. Cataliotti, and F. Bassani, “Highly anomalous group velocity of light in ultracold rubidium gases,” Phys. Rev. A 63, 023805 (2001).
[CrossRef]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metrespersecond in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Microwave Opt. Technol. Lett. 20, 17-21 (1999).
[CrossRef]

1998 (3)

Z. Liu and D. Fan, “Propagation of pulsed zeroth-order Bessel beams,” J. Mod. Opt. 45, 17-22 (1998).
[CrossRef]

S. Holm, “Bessel and conical beams and approximation with annular arrays,” IEEE Trans. Ultrason., Ferroelect., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 712-718 (1998).
[CrossRef]

P. L. Greene and D. G. Hall, “Properties and diffraction of vector Bessel-Gauss beams,” J. Opt. Soc. Am. A 15, 3020-3027 (1998).
[CrossRef]

1997 (4)

1995 (1)

1992 (2)

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921-1923 (1992).
[CrossRef]

J. Lu and J. F. Greenleaf, “Nondiffracting X waves--exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19-31 (1992).
[CrossRef] [PubMed]

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499-1501 (1987).
[CrossRef] [PubMed]

Alexeev, I.

I. Alexeev, K. Kim, and H. M. Milchberg, “Measurement of the superluminal group velocity of an ultrashort Bessel beam pulse,” Phys. Rev. Lett. 88, 073901 (2002).
[CrossRef] [PubMed]

Altug, H.

H. Altug and J. Vucković, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

Anderson, E. H.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921-1923 (1992).
[CrossRef]

Artoni, M.

M. Artoni, G. C. La Rocca, F. S. Cataliotti, and F. Bassani, “Highly anomalous group velocity of light in ultracold rubidium gases,” Phys. Rev. A 63, 023805 (2001).
[CrossRef]

Bassani, F.

M. Artoni, G. C. La Rocca, F. S. Cataliotti, and F. Bassani, “Highly anomalous group velocity of light in ultracold rubidium gases,” Phys. Rev. A 63, 023805 (2001).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metrespersecond in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Benet, A. F.

J. G. Rivas, A. F. Benet, J. Niehusmann, P. H. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71, 155110 (2005).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Bolivar, P. H.

J. G. Rivas, A. F. Benet, J. Niehusmann, P. H. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71, 155110 (2005).
[CrossRef]

Borel, P. I.

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauthier, Slow and Fast Light, Progress in Optics, Vol. 43 of E.Wolf, ed. (Elsevier, 2002), chap. 6, pp. 497-530.

Brillouin, L.

L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).

Caballero, M. T.

Cataliotti, F. S.

M. Artoni, G. C. La Rocca, F. S. Cataliotti, and F. Bassani, “Highly anomalous group velocity of light in ultracold rubidium gases,” Phys. Rev. A 63, 023805 (2001).
[CrossRef]

Couairon, A.

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 22, 223902 (2007).
[CrossRef]

Dartora, C. A.

E. Recami, M. Zamboni-Rached, K. Z. Nóbrega, C. A. Dartora, and H. E. Hernández, “On the localized superluminal solutions to the Maxwell equations,” IEEE J. Sel. Top. Quantum Electron. 9, 59-73 (2003).
[CrossRef]

Di Trapani, P.

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 22, 223902 (2007).
[CrossRef]

Dubietis, A.

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 22, 223902 (2007).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499-1501 (1987).
[CrossRef] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metrespersecond in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499-1501 (1987).
[CrossRef] [PubMed]

Engelen, R. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Erdogan, T.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921-1923 (1992).
[CrossRef]

Erlig, H.

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Microwave Opt. Technol. Lett. 20, 17-21 (1999).
[CrossRef]

Faccio, D.

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 22, 223902 (2007).
[CrossRef]

Fage-Pedersen, J.

Fan, D.

Z. Liu and D. Fan, “Propagation of pulsed zeroth-order Bessel beams,” J. Mod. Opt. 45, 17-22 (1998).
[CrossRef]

Feinberg, J.

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Microwave Opt. Technol. Lett. 20, 17-21 (1999).
[CrossRef]

Fetterman, H. R.

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Microwave Opt. Technol. Lett. 20, 17-21 (1999).
[CrossRef]

Fontana, F.

M. Zamboni-Rached, F. Fontana, and E. Recami, “Superluminal localized solutions to Maxwell equations propagating along a waveguide: the finite-energy case,” Phys. Rev. E 67, 036620 (2003).
[CrossRef]

Frandsen, L. H.

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, Slow and Fast Light, Progress in Optics, Vol. 43 of E.Wolf, ed. (Elsevier, 2002), chap. 6, pp. 497-530.

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Greene, P. L.

Greenleaf, J. F.

J. Lu and J. F. Greenleaf, “Nondiffracting X waves--exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19-31 (1992).
[CrossRef] [PubMed]

Grubsky, V.

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Microwave Opt. Technol. Lett. 20, 17-21 (1999).
[CrossRef]

Hall, D. G.

P. L. Greene and D. G. Hall, “Properties and diffraction of vector Bessel-Gauss beams,” J. Opt. Soc. Am. A 15, 3020-3027 (1998).
[CrossRef]

R. H. Jordan and D. G. Hall, “Highly directional surface emission from concentric-circle gratings on planar optical waveguides: the field expansion method,” J. Opt. Soc. Am. A 12, 84-94 (1995).
[CrossRef]

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921-1923 (1992).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metrespersecond in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metrespersecond in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Hernández, H. E.

E. Recami, M. Zamboni-Rached, K. Z. Nóbrega, C. A. Dartora, and H. E. Hernández, “On the localized superluminal solutions to the Maxwell equations,” IEEE J. Sel. Top. Quantum Electron. 9, 59-73 (2003).
[CrossRef]

Hernández-Figueroa, H. E.

M. Zamboni-Rached, K. Z. Nóbrega, E. Recami, and H. E. Hernández-Figueroa, “Superluminal X-shaped beams propagating without distortion along a coaxial guide,” Phys. Rev. E 66, 046617 (2002).
[CrossRef]

H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Localized Waves (Wiley, 2008).
[CrossRef]

Holm, S.

S. Holm, “Bessel and conical beams and approximation with annular arrays,” IEEE Trans. Ultrason., Ferroelect., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 712-718 (1998).
[CrossRef]

Imamoglu, A.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, S. G.

Jordan, R. H.

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kim, K.

I. Alexeev, K. Kim, and H. M. Milchberg, “Measurement of the superluminal group velocity of an ultrashort Bessel beam pulse,” Phys. Rev. Lett. 88, 073901 (2002).
[CrossRef] [PubMed]

King, O.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921-1923 (1992).
[CrossRef]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Krauss, T. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kuipers, L.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kurz, H.

J. G. Rivas, A. F. Benet, J. Niehusmann, P. H. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71, 155110 (2005).
[CrossRef]

La Rocca, G. C.

M. Artoni, G. C. La Rocca, F. S. Cataliotti, and F. Bassani, “Highly anomalous group velocity of light in ultracold rubidium gases,” Phys. Rev. A 63, 023805 (2001).
[CrossRef]

Lanzl, T.

Lavrinenko, A. V.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Licul, S.

S. Licul, “On the generation and applications of localized waves,” M.Sc. thesis (Virginia Polytechnic Institute, 2001).

Liu, Z.

Lu, J.

J. Lu and J. F. Greenleaf, “Nondiffracting X waves--exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19-31 (1992).
[CrossRef] [PubMed]

Lü, B.

Lukin, M. D.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

Maier, M.

Martinelli, M.

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14, 44-48 (2003).
[CrossRef]

Melloni, A.

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14, 44-48 (2003).
[CrossRef]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499-1501 (1987).
[CrossRef] [PubMed]

Milchberg, H. M.

I. Alexeev, K. Kim, and H. M. Milchberg, “Measurement of the superluminal group velocity of an ultrashort Bessel beam pulse,” Phys. Rev. Lett. 88, 073901 (2002).
[CrossRef] [PubMed]

Miret, J. J.

Morichetti, F.

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14, 44-48 (2003).
[CrossRef]

Niehusmann, J.

J. G. Rivas, A. F. Benet, J. Niehusmann, P. H. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71, 155110 (2005).
[CrossRef]

Niggl, L.

Nóbrega, K. Z.

E. Recami, M. Zamboni-Rached, K. Z. Nóbrega, C. A. Dartora, and H. E. Hernández, “On the localized superluminal solutions to the Maxwell equations,” IEEE J. Sel. Top. Quantum Electron. 9, 59-73 (2003).
[CrossRef]

M. Zamboni-Rached, K. Z. Nóbrega, E. Recami, and H. E. Hernández-Figueroa, “Superluminal X-shaped beams propagating without distortion along a coaxial guide,” Phys. Rev. E 66, 046617 (2002).
[CrossRef]

Parola, A.

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 22, 223902 (2007).
[CrossRef]

Piskarskas, A.

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 22, 223902 (2007).
[CrossRef]

Polesana, P.

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 22, 223902 (2007).
[CrossRef]

Porras, M. A.

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 22, 223902 (2007).
[CrossRef]

C. J. Zapata-Rodríguez and M. A. Porras, “X-wave bullets with negative group velocity in vacuum,” Opt. Lett. 31, 3532-3534 (2006).
[CrossRef] [PubMed]

M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
[CrossRef]

M. A. Porras, “Diffraction-free and dispersion-free pulsed beam propagation in dispersive media,” Opt. Lett. 26, 1364-1366 (2001).
[CrossRef]

Povinelli, M. L.

Qureshi, A. H.

T. M. Wallett and A. H. Qureshi, Review of Slow-Wave Structures, NASA Technical Memorandum 106639 (NASA, 1994), pp. 1-28.

Rätsep, M.

Recami, E.

M. Zamboni-Rached and E. Recami, “Subluminal wave bullets: exact localized subluminal solutions to the wave equations,” Phys. Rev. A 77, 033824 (2008).
[CrossRef]

E. Recami, M. Zamboni-Rached, K. Z. Nóbrega, C. A. Dartora, and H. E. Hernández, “On the localized superluminal solutions to the Maxwell equations,” IEEE J. Sel. Top. Quantum Electron. 9, 59-73 (2003).
[CrossRef]

M. Zamboni-Rached, F. Fontana, and E. Recami, “Superluminal localized solutions to Maxwell equations propagating along a waveguide: the finite-energy case,” Phys. Rev. E 67, 036620 (2003).
[CrossRef]

M. Zamboni-Rached, K. Z. Nóbrega, E. Recami, and H. E. Hernández-Figueroa, “Superluminal X-shaped beams propagating without distortion along a coaxial guide,” Phys. Rev. E 66, 046617 (2002).
[CrossRef]

H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Localized Waves (Wiley, 2008).
[CrossRef]

Reivelt, K.

P. Saari and K. Reivelt, “Evidence of X-shaped propagation-invariant localized light waves,” Phys. Rev. Lett. 79, 4135-4138 (1997).
[CrossRef]

Rivas, J. G.

J. G. Rivas, A. F. Benet, J. Niehusmann, P. H. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71, 155110 (2005).
[CrossRef]

Rooks, M. J.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921-1923 (1992).
[CrossRef]

Saari, P.

H. Sõnajalg, M. Rätsep, and P. Saari, “Demonstration of the Bessel-X pulse propagating with strong lateral and longitudinal localization in a dispersive medium,” Opt. Lett. 22, 310-312 (1997).
[CrossRef] [PubMed]

P. Saari and K. Reivelt, “Evidence of X-shaped propagation-invariant localized light waves,” Phys. Rev. Lett. 79, 4135-4138 (1997).
[CrossRef]

P. Saari, “Localized waves in femtosecond optics” (2003), personal communication.

Shaarawi, A. M.

Sheppard, C. J.

Sõnajalg, H.

Starodubov, D. S.

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Microwave Opt. Technol. Lett. 20, 17-21 (1999).
[CrossRef]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (Mcgraw-Hill College, 1941).

Trapani, P. D.

M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
[CrossRef]

Valiulis, G.

M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
[CrossRef]

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Vuckovic, J.

H. Altug and J. Vucković, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

Wallett, T. M.

T. M. Wallett and A. H. Qureshi, Review of Slow-Wave Structures, NASA Technical Memorandum 106639 (NASA, 1994), pp. 1-28.

Wang, S.

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Microwave Opt. Technol. Lett. 20, 17-21 (1999).
[CrossRef]

Wicks, G. W.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921-1923 (1992).
[CrossRef]

Yablonovitch, E.

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Microwave Opt. Technol. Lett. 20, 17-21 (1999).
[CrossRef]

Zamboni-Rached, M.

M. Zamboni-Rached and E. Recami, “Subluminal wave bullets: exact localized subluminal solutions to the wave equations,” Phys. Rev. A 77, 033824 (2008).
[CrossRef]

M. Zamboni-Rached, “Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: frozen waves,” Opt. Express 12, 4001-4006 (2004).
[CrossRef] [PubMed]

E. Recami, M. Zamboni-Rached, K. Z. Nóbrega, C. A. Dartora, and H. E. Hernández, “On the localized superluminal solutions to the Maxwell equations,” IEEE J. Sel. Top. Quantum Electron. 9, 59-73 (2003).
[CrossRef]

M. Zamboni-Rached, F. Fontana, and E. Recami, “Superluminal localized solutions to Maxwell equations propagating along a waveguide: the finite-energy case,” Phys. Rev. E 67, 036620 (2003).
[CrossRef]

M. Zamboni-Rached, K. Z. Nóbrega, E. Recami, and H. E. Hernández-Figueroa, “Superluminal X-shaped beams propagating without distortion along a coaxial guide,” Phys. Rev. E 66, 046617 (2002).
[CrossRef]

H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Localized Waves (Wiley, 2008).
[CrossRef]

Zapata-Rodríguez, C. J.

Appl. Phys. Lett. (2)

H. Altug and J. Vucković, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921-1923 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Recami, M. Zamboni-Rached, K. Z. Nóbrega, C. A. Dartora, and H. E. Hernández, “On the localized superluminal solutions to the Maxwell equations,” IEEE J. Sel. Top. Quantum Electron. 9, 59-73 (2003).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

J. Lu and J. F. Greenleaf, “Nondiffracting X waves--exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19-31 (1992).
[CrossRef] [PubMed]

S. Holm, “Bessel and conical beams and approximation with annular arrays,” IEEE Trans. Ultrason., Ferroelect., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 712-718 (1998).
[CrossRef]

J. Mod. Opt. (1)

Z. Liu and D. Fan, “Propagation of pulsed zeroth-order Bessel beams,” J. Mod. Opt. 45, 17-22 (1998).
[CrossRef]

J. Opt. Soc. Am. A (7)

Microwave Opt. Technol. Lett. (1)

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Microwave Opt. Technol. Lett. 20, 17-21 (1999).
[CrossRef]

Nature (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metrespersecond in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. J. Zapata-Rodríguez, “Focal waveforms with tunable carrier frequency using dispersive aperturing,” Opt. Commun. 281, 4840-4843 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Opt. Photonics News (1)

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14, 44-48 (2003).
[CrossRef]

Phys. Rev. A (2)

M. Artoni, G. C. La Rocca, F. S. Cataliotti, and F. Bassani, “Highly anomalous group velocity of light in ultracold rubidium gases,” Phys. Rev. A 63, 023805 (2001).
[CrossRef]

M. Zamboni-Rached and E. Recami, “Subluminal wave bullets: exact localized subluminal solutions to the wave equations,” Phys. Rev. A 77, 033824 (2008).
[CrossRef]

Phys. Rev. B (1)

J. G. Rivas, A. F. Benet, J. Niehusmann, P. H. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71, 155110 (2005).
[CrossRef]

Phys. Rev. E (3)

M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
[CrossRef]

M. Zamboni-Rached, K. Z. Nóbrega, E. Recami, and H. E. Hernández-Figueroa, “Superluminal X-shaped beams propagating without distortion along a coaxial guide,” Phys. Rev. E 66, 046617 (2002).
[CrossRef]

M. Zamboni-Rached, F. Fontana, and E. Recami, “Superluminal localized solutions to Maxwell equations propagating along a waveguide: the finite-energy case,” Phys. Rev. E 67, 036620 (2003).
[CrossRef]

Phys. Rev. Lett. (5)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499-1501 (1987).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

I. Alexeev, K. Kim, and H. M. Milchberg, “Measurement of the superluminal group velocity of an ultrashort Bessel beam pulse,” Phys. Rev. Lett. 88, 073901 (2002).
[CrossRef] [PubMed]

P. Saari and K. Reivelt, “Evidence of X-shaped propagation-invariant localized light waves,” Phys. Rev. Lett. 79, 4135-4138 (1997).
[CrossRef]

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 22, 223902 (2007).
[CrossRef]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Other (7)

J. A. Stratton, Electromagnetic Theory (Mcgraw-Hill College, 1941).

L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).

T. M. Wallett and A. H. Qureshi, Review of Slow-Wave Structures, NASA Technical Memorandum 106639 (NASA, 1994), pp. 1-28.

R. W. Boyd and D. J. Gauthier, Slow and Fast Light, Progress in Optics, Vol. 43 of E.Wolf, ed. (Elsevier, 2002), chap. 6, pp. 497-530.

P. Saari, “Localized waves in femtosecond optics” (2003), personal communication.

S. Licul, “On the generation and applications of localized waves,” M.Sc. thesis (Virginia Polytechnic Institute, 2001).

H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Localized Waves (Wiley, 2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Typical ω k z diagram with a cutoff frequency of ω c = 3.14 fs 1 and n = 1 . Bandgap induced by angular dispersion is filled in color. The slope of the curve at any point ( ω , k z ) of the curve (or group velocity) is smaller than the quotient between ω and k z (phase velocity).

Fig. 2
Fig. 2

Group index n g (solid curve) and group-index dispersion n g = k z 0 c (dashed curve) for ω c = 3.14 fs 1 in vacuum.

Fig. 3
Fig. 3

Instantaneous intensity E ϕ 2 (in arbitrary units) of the azimuthal PBB: (a) input plane ( z = 0 ) , and (b) output pulse ( z = L ) .

Fig. 4
Fig. 4

Diagrams for the synthesis of ultraslow resonant PBBs. (a) Spectral detuning δ ω = ω 0 ω c required to attain a given group index for ω 0 = 3.14 fs 1 . (b) Region L c < L < L D (in color) as for allowable relative bandwidths Γ.

Fig. 5
Fig. 5

Intracavity dynamics of E ϕ 2 at different transverse planes: (a) input plane z = 0 , (b) amid-reflectors plane z = L 2 , and (c) interface plane z = L .

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

k z ( ω ) = [ k 2 ( ω ) k 2 ] 1 2 ,
v g = c n [ 1 ( ω c ω 0 ) 2 ] 1 2 ,
ω = ω c ( 1 + 1 2 k z 2 k 2 ) = ω c + c 2 2 ω c n 2 k z 2 ,
k z 0 = ω c 2 n g 3 ω 0 3 n 2 c n g 3 ω 0 n 2 c ,
L D = 4 λ 0 n 2 π Γ 2 n g 3 ,
ψ m 1 + = A 1 + ( ω , 0 ) J m ( k r ) exp ( i m ϕ ) ,
A j + ( ω , z ) = A j + ( ω , 0 ) exp ( i k z j z ) ,
A j ( ω , z ) = A j ( ω , 0 ) exp ( i k z j z ) .
ψ m 3 = A 1 + ( ω , 0 ) T 1 T 2 exp ( i k z 2 L ) 1 R 2 exp ( i 2 k z 2 L ) J m ( k r ) exp ( i m ϕ ) ,
T 1 = 2 k z 1 k z 2 + k z 1 ,
T 2 = 2 k z 2 k z 2 + k z 1 ,
R = k z 2 k z 1 k z 2 + k z 1 .
[ 1 R 2 exp ( i 2 k z 2 L ) ] 1 = 1 + q = 1 R 2 q exp ( i 2 q k z 2 L ) .
E = E ϕ u ϕ = A 1 + ( ω , z ) J 1 ( k r ) u ϕ ,
A 1 + ( ω 0 + Ω , 0 ) = ( 2 π σ 2 ) 1 2 exp ( Ω 2 2 σ 2 ) ,
E ϕ ( t , r ) = exp ( i ω 0 t ) exp ( t 2 σ 2 2 ) J 1 ( k r )
L > L c = τ v g 2 = 2 λ 0 π n g Γ .
A 2 + ( ω , 0 ) = T 1 1 R 2 exp ( i 2 k z 2 L ) A 1 + ( ω , 0 ) ,
A 2 ( ω , 0 ) = R T 1 exp ( i 2 k z 2 L ) 1 R 2 exp ( i 2 k z 2 L ) A 1 + ( ω , 0 ) ,

Metrics