Abstract

The diffraction of Gaussian beams by periodic and aperiodic rulings is considered. The theory of diffraction is based on the Rayleigh–Sommerfeld integral equation with Dirichlet conditions. The transmitted power and the normally diffracted energy are analyzed as a function of the beam radius. Two methods to determine the Gaussian beam radius by means of periodic and aperiodic lamellar gratings are proposed. One is based on the maximum and the minimum transmitted power, and the other one considers the normally diffracted energy. Small and large Gaussian beam radii can be treated with these two methods.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diffraction of Gaussian and Hermite–Gaussian beams by finite gratings

O. Mata-Mendez and F. Chavez-Rivas
J. Opt. Soc. Am. A 18(3) 537-545 (2001)

Ronchi ruling characterization of axially symmetric laser beams

Robert M. O’Connell and Cheng-Hao Chen
Appl. Opt. 29(30) 4441-4446 (1990)

Diffraction of Hermite–Gaussian beams by a slit

O. Mata-Mendez and F. Chavez-Rivas
J. Opt. Soc. Am. A 12(11) 2440-2445 (1995)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription