Abstract

The goal of this paper is to propose a mathematical framework to define and analyze a general parametric form of an arbitrary nonsingular Mueller matrix. Starting from previous results about nondepolarizing matrices, we generalize the method to any nonsingular Mueller matrix. We address this problem in a six-dimensional space in order to introduce a transformation group with the same number of degrees of freedom and explain why subsets of O(5,1), the orthogonal group associated with six-dimensional Minkowski space, is a physically admissible solution to this question. Generators of this group are used to define possible expressions of an arbitrary nonsingular Mueller matrix. Ultimately, the problem of decomposition of these matrices is addressed, and we point out that the “reverse” and “forward” decomposition concepts recently introduced may be inferred from the formalism we propose.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Optical phase space, Wigner representation, and invariant quality parameters

R. Simon and N. Mukunda
J. Opt. Soc. Am. A 17(12) 2440-2463 (2000)

Polarization elements: a group-theoretical study

Sudha and A. V. Gopala Rao
J. Opt. Soc. Am. A 18(12) 3130-3134 (2001)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (58)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription