Abstract

We have demonstrated the possibility that near-stoichiometric Ti:LiNbO3 strip waveguides are fabricated by carrying out vapor transport equilibration at 1060°C for 12h on a congruent LiNbO3 substrate with photolithographically patterned 48μm wide, 115nm thick Ti strips. Optical characterizations show that these waveguides are single mode at 1.5μm and show a waveguide loss of 1.3dBcm for TM mode and 1.1dBcm for TE mode. In the width/depth direction of the waveguide, the mode field follows the Gauss/Hermite–Gauss function. Secondary-ion-mass spectrometry (SIMS) was used to study Ti-concentration profiles in the depth direction and on the surface of the 6μm wide waveguide. The result shows that the Ti profile follows a sum of two error functions along the width direction and a complementary error function in the depth direction. The surface Ti concentration, 1e width and depth, and mean diffusivities along the width and depth directions of the guide are similar to 3.0×1021cm3, 3.8μm, 2.6μm, 0.30 and 0.14μm2h, respectively. Micro-Raman analysis was carried out on the waveguide endface to characterize the depth profile of Li composition in the guiding layer. The results show that the depth profile of Li composition also follows a complementary error function with a 1e depth of 3.64μm. The mean ([LiLi]+[TiLi])([NbNb]+[TiNb]) ratio in the waveguide layer is about 0.98. The inhomogeneous Li-composition profile results in a varied substrate index in the guiding layer. A two-dimensional refractive index profile model in the waveguide is proposed by taking into consideration the varied substrate index and assuming linearity between Ti-induced index change and Ti concentration. The net waveguide surface index increments at 1545nm are 0.0114 and 0.0212 for ordinary and extraordinary rays, respectively. Based upon the constructed index model, the fundamental mode field profile was calculated using the beam propagation method, and the mode sizes and effective index versus the Ti-strip width were calculated for three lower TM and TE modes using the variational method. An agreement between theory and experiment is obtained.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993).
    [CrossRef]
  2. D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135-138 (1990).
    [CrossRef]
  3. T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499-501 (1999).
    [CrossRef]
  4. T. Fujiwara, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Second-order nonlinearity in stoichiometric LiNbO3 and LiTaO3,” in Technical Digest of Meeting on New Aspects of Nonlinear Optical Materials and Devices (IEEE, 1999), pp. 2-4.
  5. V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180 degrees domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981-1981 (1998).
    [CrossRef]
  6. A. Grisard, E. Lallier, K. Polgar, and A. Peter, “Low electric field periodic poling of thick stoichiometric lithium niobate,” Electron. Lett. 36, 1043-1044 (2000).
    [CrossRef]
  7. Á. Péter, K. Polgár, L. Kovács, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284, 149-155 (2005).
    [CrossRef]
  8. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
    [CrossRef]
  9. F. Jermann, D. M. Simon, and E. Kratzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066-2070 (1995).
    [CrossRef]
  10. R. J. Holmes and D. M. Smyth, “Titanium diffusion into LiNbO3 as a function of stoichiometry,” J. Appl. Phys. 55, 3531-3535 (1984).
    [CrossRef]
  11. H. Nakajima, M. Yuki, T. Oka, H. Yamauchi, S. Kurimura, I. Sakaguchi, and K. Kitamura, “Ti-diffused waveguides fabricated on stoichiometric LiNbO3,” in Technical Digest on Meeting on Photonics in Switching (Institute of Electronic, Information, and Communication Engineers, 2002), pp. 242-244.
  12. A. Hellwig, H. Suche, R. Schor, and W. Sohler, “Titanium-indiffused waveguides in magnesium oxide doped stoichiometric lithium niobate (MgO:SLN),” in Proceedings of the 12th European Conference on Integrated Optics (ECIO'05) (European Optical Society, 2005), paper ThB2-5.
  13. R. Mohan Kumar, F. Yamamoto, J. Ichikawa, H. Ryoken, I. Sakaguchi, X. Liu, M. Nakamura, K. Terabe, S. Takekawa, H. Haneda, and K. Kitamura, “SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide,” J. Cryst. Growth 287, 472-477 (2006).
    [CrossRef]
  14. D. L. Zhang, W. H. Wong, and E. Y. B. Pun, “Near-stoichiometric Ti:LiNbO3 waveguides fabricated using vapor transport equilibration and Ti co-diffusion,” Appl. Phys. Lett. 85, 3002-3004 (2004).
    [CrossRef]
  15. D. L. Zhang, G. G. Siu, and E. Y. B. Pun, “Raman scattering and x-ray diffraction study of near-stoichiometric Ti:LiNbO3 waveguides,” Phys. Status Solidi A 202, 2521-2530 (2005).
    [CrossRef]
  16. M. Nakamura, S. Takekawa, S. Kurimura, K. Kitamura, and H. Nakajima, “Crystal growth and characterization of titanium-doped near-stoichiometric LiNbO3,” J. Cryst. Growth 264, 339-345 (2004).
    [CrossRef]
  17. G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103-108 (1993).
    [CrossRef]
  18. M. Dinand and W. Sohler, “Theoretical modelling of optical amplification in Er-doped Ti:LiNbO3 waveguides,” IEEE J. Quantum Electron. 30, 1267-1276 (1994).
    [CrossRef]
  19. I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhöfer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695-1706 (1996).
    [CrossRef]
  20. M. Fukuma and J. Noda, “Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-a-fiber characteristics,” Appl. Opt. 19, 591-597 (1980).
    [CrossRef] [PubMed]
  21. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700-708 (1987).
    [CrossRef]
  22. E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73, 1352-1354 (1998).
    [CrossRef]
  23. J. Crank, The Mathematics of Diffusion (Oxford U. Press, 1975), pp. 175-176.
  24. K. Sugii, K. Fukuma, and H. Iwasaki, “A study of titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods,” J. Mater. Sci. 13, 523-533 (1978).
    [CrossRef]
  25. M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, and G. Celloti, “Characterization of (Ti0.65Nb0.35)O2 compound as a source for Ti-diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62-70 (1983).
    [CrossRef]
  26. C. E. Rice and R. J. Holmes, “A new rutile structure solid-solution phase in the LiNb3O8-TiO2 system, and its role in Ti diffusion into LiNbO3,” J. Appl. Phys. 60, 3836-3839 (1986).
    [CrossRef]
  27. H. F. da Silva, J. M. Filho, S. C. Zilio, and F. D. Nunes, “Modelling Ti in-diffusion in LiNbO3,” J. Phys. Condens. Matter 9, 357-364 (1997).
    [CrossRef]
  28. D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468-3473 (1992).
    [CrossRef]
  29. F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345-5350 (1995).
    [CrossRef]
  30. F. Caccavale, A. Morbiato, M. Natali, C. Sada, and F. Segato, “Correlation between optical and compositional properties of Ti:LiNbO3 channel optical waveguides,” J. Appl. Phys. 87, 1007-1011 (2000).
    [CrossRef]
  31. F. Caccavale, C. Sada, F. Segato, and F. Cavuoti, “Secondary ion mass spectrometry and optical characterization of Ti:LiNbO3 optical waveguides,” Appl. Surf. Sci. 150, 195-201 (1999).
    [CrossRef]

2006 (1)

R. Mohan Kumar, F. Yamamoto, J. Ichikawa, H. Ryoken, I. Sakaguchi, X. Liu, M. Nakamura, K. Terabe, S. Takekawa, H. Haneda, and K. Kitamura, “SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide,” J. Cryst. Growth 287, 472-477 (2006).
[CrossRef]

2005 (2)

Á. Péter, K. Polgár, L. Kovács, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284, 149-155 (2005).
[CrossRef]

D. L. Zhang, G. G. Siu, and E. Y. B. Pun, “Raman scattering and x-ray diffraction study of near-stoichiometric Ti:LiNbO3 waveguides,” Phys. Status Solidi A 202, 2521-2530 (2005).
[CrossRef]

2004 (2)

M. Nakamura, S. Takekawa, S. Kurimura, K. Kitamura, and H. Nakajima, “Crystal growth and characterization of titanium-doped near-stoichiometric LiNbO3,” J. Cryst. Growth 264, 339-345 (2004).
[CrossRef]

D. L. Zhang, W. H. Wong, and E. Y. B. Pun, “Near-stoichiometric Ti:LiNbO3 waveguides fabricated using vapor transport equilibration and Ti co-diffusion,” Appl. Phys. Lett. 85, 3002-3004 (2004).
[CrossRef]

2000 (3)

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

A. Grisard, E. Lallier, K. Polgar, and A. Peter, “Low electric field periodic poling of thick stoichiometric lithium niobate,” Electron. Lett. 36, 1043-1044 (2000).
[CrossRef]

F. Caccavale, A. Morbiato, M. Natali, C. Sada, and F. Segato, “Correlation between optical and compositional properties of Ti:LiNbO3 channel optical waveguides,” J. Appl. Phys. 87, 1007-1011 (2000).
[CrossRef]

1999 (2)

F. Caccavale, C. Sada, F. Segato, and F. Cavuoti, “Secondary ion mass spectrometry and optical characterization of Ti:LiNbO3 optical waveguides,” Appl. Surf. Sci. 150, 195-201 (1999).
[CrossRef]

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499-501 (1999).
[CrossRef]

1998 (2)

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180 degrees domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981-1981 (1998).
[CrossRef]

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73, 1352-1354 (1998).
[CrossRef]

1997 (1)

H. F. da Silva, J. M. Filho, S. C. Zilio, and F. D. Nunes, “Modelling Ti in-diffusion in LiNbO3,” J. Phys. Condens. Matter 9, 357-364 (1997).
[CrossRef]

1996 (1)

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhöfer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695-1706 (1996).
[CrossRef]

1995 (2)

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345-5350 (1995).
[CrossRef]

F. Jermann, D. M. Simon, and E. Kratzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066-2070 (1995).
[CrossRef]

1994 (1)

M. Dinand and W. Sohler, “Theoretical modelling of optical amplification in Er-doped Ti:LiNbO3 waveguides,” IEEE J. Quantum Electron. 30, 1267-1276 (1994).
[CrossRef]

1993 (2)

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103-108 (1993).
[CrossRef]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

1992 (1)

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468-3473 (1992).
[CrossRef]

1990 (1)

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135-138 (1990).
[CrossRef]

1987 (1)

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700-708 (1987).
[CrossRef]

1986 (1)

C. E. Rice and R. J. Holmes, “A new rutile structure solid-solution phase in the LiNb3O8-TiO2 system, and its role in Ti diffusion into LiNbO3,” J. Appl. Phys. 60, 3836-3839 (1986).
[CrossRef]

1984 (1)

R. J. Holmes and D. M. Smyth, “Titanium diffusion into LiNbO3 as a function of stoichiometry,” J. Appl. Phys. 55, 3531-3535 (1984).
[CrossRef]

1983 (1)

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, and G. Celloti, “Characterization of (Ti0.65Nb0.35)O2 compound as a source for Ti-diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62-70 (1983).
[CrossRef]

1980 (1)

1978 (1)

K. Sugii, K. Fukuma, and H. Iwasaki, “A study of titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods,” J. Mater. Sci. 13, 523-533 (1978).
[CrossRef]

Armenise, M. N.

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, and G. Celloti, “Characterization of (Ti0.65Nb0.35)O2 compound as a source for Ti-diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62-70 (1983).
[CrossRef]

Avrahami, Y.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73, 1352-1354 (1998).
[CrossRef]

Baumann, I.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhöfer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695-1706 (1996).
[CrossRef]

Betzler, K.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103-108 (1993).
[CrossRef]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

Bordui, P. F.

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468-3473 (1992).
[CrossRef]

Bosso, S.

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345-5350 (1995).
[CrossRef]

Brinkmann, R.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhöfer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695-1706 (1996).
[CrossRef]

Byer, R. L.

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135-138 (1990).
[CrossRef]

Caccavale, F.

F. Caccavale, A. Morbiato, M. Natali, C. Sada, and F. Segato, “Correlation between optical and compositional properties of Ti:LiNbO3 channel optical waveguides,” J. Appl. Phys. 87, 1007-1011 (2000).
[CrossRef]

F. Caccavale, C. Sada, F. Segato, and F. Cavuoti, “Secondary ion mass spectrometry and optical characterization of Ti:LiNbO3 optical waveguides,” Appl. Surf. Sci. 150, 195-201 (1999).
[CrossRef]

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345-5350 (1995).
[CrossRef]

Canali, C.

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, and G. Celloti, “Characterization of (Ti0.65Nb0.35)O2 compound as a source for Ti-diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62-70 (1983).
[CrossRef]

Carenco, A.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700-708 (1987).
[CrossRef]

Carnera, A.

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, and G. Celloti, “Characterization of (Ti0.65Nb0.35)O2 compound as a source for Ti-diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62-70 (1983).
[CrossRef]

Cavuoti, F.

F. Caccavale, C. Sada, F. Segato, and F. Cavuoti, “Secondary ion mass spectrometry and optical characterization of Ti:LiNbO3 optical waveguides,” Appl. Surf. Sci. 150, 195-201 (1999).
[CrossRef]

Celloti, G.

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, and G. Celloti, “Characterization of (Ti0.65Nb0.35)O2 compound as a source for Ti-diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62-70 (1983).
[CrossRef]

Chakraborty, P.

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345-5350 (1995).
[CrossRef]

Corsini, R.

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345-5350 (1995).
[CrossRef]

Crank, J.

J. Crank, The Mathematics of Diffusion (Oxford U. Press, 1975), pp. 175-176.

da Silva, H. F.

H. F. da Silva, J. M. Filho, S. C. Zilio, and F. D. Nunes, “Modelling Ti in-diffusion in LiNbO3,” J. Phys. Condens. Matter 9, 357-364 (1997).
[CrossRef]

Daguet, C.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700-708 (1987).
[CrossRef]

De Sario, M.

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, and G. Celloti, “Characterization of (Ti0.65Nb0.35)O2 compound as a source for Ti-diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62-70 (1983).
[CrossRef]

Dinand, M.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhöfer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695-1706 (1996).
[CrossRef]

M. Dinand and W. Sohler, “Theoretical modelling of optical amplification in Er-doped Ti:LiNbO3 waveguides,” IEEE J. Quantum Electron. 30, 1267-1276 (1994).
[CrossRef]

Fejer, M. M.

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468-3473 (1992).
[CrossRef]

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135-138 (1990).
[CrossRef]

Filho, J. M.

H. F. da Silva, J. M. Filho, S. C. Zilio, and F. D. Nunes, “Modelling Ti in-diffusion in LiNbO3,” J. Phys. Condens. Matter 9, 357-364 (1997).
[CrossRef]

Fouchet, S.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700-708 (1987).
[CrossRef]

Fujiwara, T.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499-501 (1999).
[CrossRef]

T. Fujiwara, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Second-order nonlinearity in stoichiometric LiNbO3 and LiTaO3,” in Technical Digest of Meeting on New Aspects of Nonlinear Optical Materials and Devices (IEEE, 1999), pp. 2-4.

Fukuma, K.

K. Sugii, K. Fukuma, and H. Iwasaki, “A study of titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods,” J. Mater. Sci. 13, 523-533 (1978).
[CrossRef]

Fukuma, M.

Furukawa, Y.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499-501 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180 degrees domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981-1981 (1998).
[CrossRef]

T. Fujiwara, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Second-order nonlinearity in stoichiometric LiNbO3 and LiTaO3,” in Technical Digest of Meeting on New Aspects of Nonlinear Optical Materials and Devices (IEEE, 1999), pp. 2-4.

Gather, B.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103-108 (1993).
[CrossRef]

Gianello, G.

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345-5350 (1995).
[CrossRef]

Gopalan, V.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180 degrees domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981-1981 (1998).
[CrossRef]

Grachev, V. G.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103-108 (1993).
[CrossRef]

Grisard, A.

A. Grisard, E. Lallier, K. Polgar, and A. Peter, “Low electric field periodic poling of thick stoichiometric lithium niobate,” Electron. Lett. 36, 1043-1044 (2000).
[CrossRef]

Guglielmi, R.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700-708 (1987).
[CrossRef]

Haneda, H.

R. Mohan Kumar, F. Yamamoto, J. Ichikawa, H. Ryoken, I. Sakaguchi, X. Liu, M. Nakamura, K. Terabe, S. Takekawa, H. Haneda, and K. Kitamura, “SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide,” J. Cryst. Growth 287, 472-477 (2006).
[CrossRef]

Hellwig, A.

A. Hellwig, H. Suche, R. Schor, and W. Sohler, “Titanium-indiffused waveguides in magnesium oxide doped stoichiometric lithium niobate (MgO:SLN),” in Proceedings of the 12th European Conference on Integrated Optics (ECIO'05) (European Optical Society, 2005), paper ThB2-5.

Holmes, R. J.

C. E. Rice and R. J. Holmes, “A new rutile structure solid-solution phase in the LiNb3O8-TiO2 system, and its role in Ti diffusion into LiNbO3,” J. Appl. Phys. 60, 3836-3839 (1986).
[CrossRef]

R. J. Holmes and D. M. Smyth, “Titanium diffusion into LiNbO3 as a function of stoichiometry,” J. Appl. Phys. 55, 3531-3535 (1984).
[CrossRef]

Ichikawa, J.

R. Mohan Kumar, F. Yamamoto, J. Ichikawa, H. Ryoken, I. Sakaguchi, X. Liu, M. Nakamura, K. Terabe, S. Takekawa, H. Haneda, and K. Kitamura, “SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide,” J. Cryst. Growth 287, 472-477 (2006).
[CrossRef]

Ikushima, A. J.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499-501 (1999).
[CrossRef]

T. Fujiwara, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Second-order nonlinearity in stoichiometric LiNbO3 and LiTaO3,” in Technical Digest of Meeting on New Aspects of Nonlinear Optical Materials and Devices (IEEE, 1999), pp. 2-4.

Iwasaki, H.

K. Sugii, K. Fukuma, and H. Iwasaki, “A study of titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods,” J. Mater. Sci. 13, 523-533 (1978).
[CrossRef]

Jermann, F.

F. Jermann, D. M. Simon, and E. Kratzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066-2070 (1995).
[CrossRef]

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103-108 (1993).
[CrossRef]

Jundt, D. H.

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468-3473 (1992).
[CrossRef]

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135-138 (1990).
[CrossRef]

Kitamura, K.

R. Mohan Kumar, F. Yamamoto, J. Ichikawa, H. Ryoken, I. Sakaguchi, X. Liu, M. Nakamura, K. Terabe, S. Takekawa, H. Haneda, and K. Kitamura, “SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide,” J. Cryst. Growth 287, 472-477 (2006).
[CrossRef]

M. Nakamura, S. Takekawa, S. Kurimura, K. Kitamura, and H. Nakajima, “Crystal growth and characterization of titanium-doped near-stoichiometric LiNbO3,” J. Cryst. Growth 264, 339-345 (2004).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499-501 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180 degrees domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981-1981 (1998).
[CrossRef]

T. Fujiwara, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Second-order nonlinearity in stoichiometric LiNbO3 and LiTaO3,” in Technical Digest of Meeting on New Aspects of Nonlinear Optical Materials and Devices (IEEE, 1999), pp. 2-4.

H. Nakajima, M. Yuki, T. Oka, H. Yamauchi, S. Kurimura, I. Sakaguchi, and K. Kitamura, “Ti-diffused waveguides fabricated on stoichiometric LiNbO3,” in Technical Digest on Meeting on Photonics in Switching (Institute of Electronic, Information, and Communication Engineers, 2002), pp. 242-244.

Klauer, S.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103-108 (1993).
[CrossRef]

Kokanyan, E. P.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103-108 (1993).
[CrossRef]

Kovács, L.

Á. Péter, K. Polgár, L. Kovács, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284, 149-155 (2005).
[CrossRef]

Kratzig, E.

Kurimura, S.

M. Nakamura, S. Takekawa, S. Kurimura, K. Kitamura, and H. Nakajima, “Crystal growth and characterization of titanium-doped near-stoichiometric LiNbO3,” J. Cryst. Growth 264, 339-345 (2004).
[CrossRef]

H. Nakajima, M. Yuki, T. Oka, H. Yamauchi, S. Kurimura, I. Sakaguchi, and K. Kitamura, “Ti-diffused waveguides fabricated on stoichiometric LiNbO3,” in Technical Digest on Meeting on Photonics in Switching (Institute of Electronic, Information, and Communication Engineers, 2002), pp. 242-244.

Lallier, E.

A. Grisard, E. Lallier, K. Polgar, and A. Peter, “Low electric field periodic poling of thick stoichiometric lithium niobate,” Electron. Lett. 36, 1043-1044 (2000).
[CrossRef]

Lengyel, K.

Á. Péter, K. Polgár, L. Kovács, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284, 149-155 (2005).
[CrossRef]

Liu, X.

R. Mohan Kumar, F. Yamamoto, J. Ichikawa, H. Ryoken, I. Sakaguchi, X. Liu, M. Nakamura, K. Terabe, S. Takekawa, H. Haneda, and K. Kitamura, “SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide,” J. Cryst. Growth 287, 472-477 (2006).
[CrossRef]

Malovichko, G. I.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103-108 (1993).
[CrossRef]

Mansour, I.

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345-5350 (1995).
[CrossRef]

Mazzoldi, P.

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, and G. Celloti, “Characterization of (Ti0.65Nb0.35)O2 compound as a source for Ti-diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62-70 (1983).
[CrossRef]

Metzger, T. H.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73, 1352-1354 (1998).
[CrossRef]

Mitchell, T. E.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180 degrees domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981-1981 (1998).
[CrossRef]

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

Mohan Kumar, R.

R. Mohan Kumar, F. Yamamoto, J. Ichikawa, H. Ryoken, I. Sakaguchi, X. Liu, M. Nakamura, K. Terabe, S. Takekawa, H. Haneda, and K. Kitamura, “SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide,” J. Cryst. Growth 287, 472-477 (2006).
[CrossRef]

Morbiato, A.

F. Caccavale, A. Morbiato, M. Natali, C. Sada, and F. Segato, “Correlation between optical and compositional properties of Ti:LiNbO3 channel optical waveguides,” J. Appl. Phys. 87, 1007-1011 (2000).
[CrossRef]

Mussi, G.

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345-5350 (1995).
[CrossRef]

Nakajima, H.

M. Nakamura, S. Takekawa, S. Kurimura, K. Kitamura, and H. Nakajima, “Crystal growth and characterization of titanium-doped near-stoichiometric LiNbO3,” J. Cryst. Growth 264, 339-345 (2004).
[CrossRef]

H. Nakajima, M. Yuki, T. Oka, H. Yamauchi, S. Kurimura, I. Sakaguchi, and K. Kitamura, “Ti-diffused waveguides fabricated on stoichiometric LiNbO3,” in Technical Digest on Meeting on Photonics in Switching (Institute of Electronic, Information, and Communication Engineers, 2002), pp. 242-244.

Nakamura, M.

R. Mohan Kumar, F. Yamamoto, J. Ichikawa, H. Ryoken, I. Sakaguchi, X. Liu, M. Nakamura, K. Terabe, S. Takekawa, H. Haneda, and K. Kitamura, “SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide,” J. Cryst. Growth 287, 472-477 (2006).
[CrossRef]

M. Nakamura, S. Takekawa, S. Kurimura, K. Kitamura, and H. Nakajima, “Crystal growth and characterization of titanium-doped near-stoichiometric LiNbO3,” J. Cryst. Growth 264, 339-345 (2004).
[CrossRef]

Natali, M.

F. Caccavale, A. Morbiato, M. Natali, C. Sada, and F. Segato, “Correlation between optical and compositional properties of Ti:LiNbO3 channel optical waveguides,” J. Appl. Phys. 87, 1007-1011 (2000).
[CrossRef]

Noda, J.

Norwood, R. G.

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468-3473 (1992).
[CrossRef]

Nunes, F. D.

H. F. da Silva, J. M. Filho, S. C. Zilio, and F. D. Nunes, “Modelling Ti in-diffusion in LiNbO3,” J. Phys. Condens. Matter 9, 357-364 (1997).
[CrossRef]

Ohama, M.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499-501 (1999).
[CrossRef]

Oka, T.

H. Nakajima, M. Yuki, T. Oka, H. Yamauchi, S. Kurimura, I. Sakaguchi, and K. Kitamura, “Ti-diffused waveguides fabricated on stoichiometric LiNbO3,” in Technical Digest on Meeting on Photonics in Switching (Institute of Electronic, Information, and Communication Engineers, 2002), pp. 242-244.

Peisl, J.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73, 1352-1354 (1998).
[CrossRef]

Peter, A.

A. Grisard, E. Lallier, K. Polgar, and A. Peter, “Low electric field periodic poling of thick stoichiometric lithium niobate,” Electron. Lett. 36, 1043-1044 (2000).
[CrossRef]

Péter, Á.

Á. Péter, K. Polgár, L. Kovács, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284, 149-155 (2005).
[CrossRef]

Polgar, K.

A. Grisard, E. Lallier, K. Polgar, and A. Peter, “Low electric field periodic poling of thick stoichiometric lithium niobate,” Electron. Lett. 36, 1043-1044 (2000).
[CrossRef]

Polgár, K.

Á. Péter, K. Polgár, L. Kovács, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284, 149-155 (2005).
[CrossRef]

Pun, E. Y. B.

D. L. Zhang, G. G. Siu, and E. Y. B. Pun, “Raman scattering and x-ray diffraction study of near-stoichiometric Ti:LiNbO3 waveguides,” Phys. Status Solidi A 202, 2521-2530 (2005).
[CrossRef]

D. L. Zhang, W. H. Wong, and E. Y. B. Pun, “Near-stoichiometric Ti:LiNbO3 waveguides fabricated using vapor transport equilibration and Ti co-diffusion,” Appl. Phys. Lett. 85, 3002-3004 (2004).
[CrossRef]

Quaranta, A.

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345-5350 (1995).
[CrossRef]

Rice, C. E.

C. E. Rice and R. J. Holmes, “A new rutile structure solid-solution phase in the LiNb3O8-TiO2 system, and its role in Ti diffusion into LiNbO3,” J. Appl. Phys. 60, 3836-3839 (1986).
[CrossRef]

Riviere, L.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700-708 (1987).
[CrossRef]

Ryoken, H.

R. Mohan Kumar, F. Yamamoto, J. Ichikawa, H. Ryoken, I. Sakaguchi, X. Liu, M. Nakamura, K. Terabe, S. Takekawa, H. Haneda, and K. Kitamura, “SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide,” J. Cryst. Growth 287, 472-477 (2006).
[CrossRef]

Sada, C.

F. Caccavale, A. Morbiato, M. Natali, C. Sada, and F. Segato, “Correlation between optical and compositional properties of Ti:LiNbO3 channel optical waveguides,” J. Appl. Phys. 87, 1007-1011 (2000).
[CrossRef]

F. Caccavale, C. Sada, F. Segato, and F. Cavuoti, “Secondary ion mass spectrometry and optical characterization of Ti:LiNbO3 optical waveguides,” Appl. Surf. Sci. 150, 195-201 (1999).
[CrossRef]

Sakaguchi, I.

R. Mohan Kumar, F. Yamamoto, J. Ichikawa, H. Ryoken, I. Sakaguchi, X. Liu, M. Nakamura, K. Terabe, S. Takekawa, H. Haneda, and K. Kitamura, “SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide,” J. Cryst. Growth 287, 472-477 (2006).
[CrossRef]

H. Nakajima, M. Yuki, T. Oka, H. Yamauchi, S. Kurimura, I. Sakaguchi, and K. Kitamura, “Ti-diffused waveguides fabricated on stoichiometric LiNbO3,” in Technical Digest on Meeting on Photonics in Switching (Institute of Electronic, Information, and Communication Engineers, 2002), pp. 242-244.

Sauer, W.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73, 1352-1354 (1998).
[CrossRef]

Schirmer, O. F.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103-108 (1993).
[CrossRef]

Schlarb, U.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103-108 (1993).
[CrossRef]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

Schor, R.

A. Hellwig, H. Suche, R. Schor, and W. Sohler, “Titanium-indiffused waveguides in magnesium oxide doped stoichiometric lithium niobate (MgO:SLN),” in Proceedings of the 12th European Conference on Integrated Optics (ECIO'05) (European Optical Society, 2005), paper ThB2-5.

Segato, F.

F. Caccavale, A. Morbiato, M. Natali, C. Sada, and F. Segato, “Correlation between optical and compositional properties of Ti:LiNbO3 channel optical waveguides,” J. Appl. Phys. 87, 1007-1011 (2000).
[CrossRef]

F. Caccavale, C. Sada, F. Segato, and F. Cavuoti, “Secondary ion mass spectrometry and optical characterization of Ti:LiNbO3 optical waveguides,” Appl. Surf. Sci. 150, 195-201 (1999).
[CrossRef]

Simon, D. M.

Siu, G. G.

D. L. Zhang, G. G. Siu, and E. Y. B. Pun, “Raman scattering and x-ray diffraction study of near-stoichiometric Ti:LiNbO3 waveguides,” Phys. Status Solidi A 202, 2521-2530 (2005).
[CrossRef]

Smyth, D. M.

R. J. Holmes and D. M. Smyth, “Titanium diffusion into LiNbO3 as a function of stoichiometry,” J. Appl. Phys. 55, 3531-3535 (1984).
[CrossRef]

Sohler, W.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhöfer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695-1706 (1996).
[CrossRef]

M. Dinand and W. Sohler, “Theoretical modelling of optical amplification in Er-doped Ti:LiNbO3 waveguides,” IEEE J. Quantum Electron. 30, 1267-1276 (1994).
[CrossRef]

A. Hellwig, H. Suche, R. Schor, and W. Sohler, “Titanium-indiffused waveguides in magnesium oxide doped stoichiometric lithium niobate (MgO:SLN),” in Proceedings of the 12th European Conference on Integrated Optics (ECIO'05) (European Optical Society, 2005), paper ThB2-5.

Suche, H.

A. Hellwig, H. Suche, R. Schor, and W. Sohler, “Titanium-indiffused waveguides in magnesium oxide doped stoichiometric lithium niobate (MgO:SLN),” in Proceedings of the 12th European Conference on Integrated Optics (ECIO'05) (European Optical Society, 2005), paper ThB2-5.

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

Sugii, K.

K. Sugii, K. Fukuma, and H. Iwasaki, “A study of titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods,” J. Mater. Sci. 13, 523-533 (1978).
[CrossRef]

Takahashi, M.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499-501 (1999).
[CrossRef]

Takekawa, S.

R. Mohan Kumar, F. Yamamoto, J. Ichikawa, H. Ryoken, I. Sakaguchi, X. Liu, M. Nakamura, K. Terabe, S. Takekawa, H. Haneda, and K. Kitamura, “SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide,” J. Cryst. Growth 287, 472-477 (2006).
[CrossRef]

M. Nakamura, S. Takekawa, S. Kurimura, K. Kitamura, and H. Nakajima, “Crystal growth and characterization of titanium-doped near-stoichiometric LiNbO3,” J. Cryst. Growth 264, 339-345 (2004).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

Terabe, K.

R. Mohan Kumar, F. Yamamoto, J. Ichikawa, H. Ryoken, I. Sakaguchi, X. Liu, M. Nakamura, K. Terabe, S. Takekawa, H. Haneda, and K. Kitamura, “SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide,” J. Cryst. Growth 287, 472-477 (2006).
[CrossRef]

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

Westenhöfer, S.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhöfer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695-1706 (1996).
[CrossRef]

Wohlecke, M.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103-108 (1993).
[CrossRef]

Wong, W. H.

D. L. Zhang, W. H. Wong, and E. Y. B. Pun, “Near-stoichiometric Ti:LiNbO3 waveguides fabricated using vapor transport equilibration and Ti co-diffusion,” Appl. Phys. Lett. 85, 3002-3004 (2004).
[CrossRef]

Yamamoto, F.

R. Mohan Kumar, F. Yamamoto, J. Ichikawa, H. Ryoken, I. Sakaguchi, X. Liu, M. Nakamura, K. Terabe, S. Takekawa, H. Haneda, and K. Kitamura, “SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide,” J. Cryst. Growth 287, 472-477 (2006).
[CrossRef]

Yamauchi, H.

H. Nakajima, M. Yuki, T. Oka, H. Yamauchi, S. Kurimura, I. Sakaguchi, and K. Kitamura, “Ti-diffused waveguides fabricated on stoichiometric LiNbO3,” in Technical Digest on Meeting on Photonics in Switching (Institute of Electronic, Information, and Communication Engineers, 2002), pp. 242-244.

Yuki, M.

H. Nakajima, M. Yuki, T. Oka, H. Yamauchi, S. Kurimura, I. Sakaguchi, and K. Kitamura, “Ti-diffused waveguides fabricated on stoichiometric LiNbO3,” in Technical Digest on Meeting on Photonics in Switching (Institute of Electronic, Information, and Communication Engineers, 2002), pp. 242-244.

Zhang, D. L.

D. L. Zhang, G. G. Siu, and E. Y. B. Pun, “Raman scattering and x-ray diffraction study of near-stoichiometric Ti:LiNbO3 waveguides,” Phys. Status Solidi A 202, 2521-2530 (2005).
[CrossRef]

D. L. Zhang, W. H. Wong, and E. Y. B. Pun, “Near-stoichiometric Ti:LiNbO3 waveguides fabricated using vapor transport equilibration and Ti co-diffusion,” Appl. Phys. Lett. 85, 3002-3004 (2004).
[CrossRef]

Zilio, S. C.

H. F. da Silva, J. M. Filho, S. C. Zilio, and F. D. Nunes, “Modelling Ti in-diffusion in LiNbO3,” J. Phys. Condens. Matter 9, 357-364 (1997).
[CrossRef]

Zolotoyabko, E.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73, 1352-1354 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103-108 (1993).
[CrossRef]

Appl. Phys. Lett. (4)

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180 degrees domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981-1981 (1998).
[CrossRef]

D. L. Zhang, W. H. Wong, and E. Y. B. Pun, “Near-stoichiometric Ti:LiNbO3 waveguides fabricated using vapor transport equilibration and Ti co-diffusion,” Appl. Phys. Lett. 85, 3002-3004 (2004).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73, 1352-1354 (1998).
[CrossRef]

Appl. Surf. Sci. (1)

F. Caccavale, C. Sada, F. Segato, and F. Cavuoti, “Secondary ion mass spectrometry and optical characterization of Ti:LiNbO3 optical waveguides,” Appl. Surf. Sci. 150, 195-201 (1999).
[CrossRef]

Electron. Lett. (2)

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499-501 (1999).
[CrossRef]

A. Grisard, E. Lallier, K. Polgar, and A. Peter, “Low electric field periodic poling of thick stoichiometric lithium niobate,” Electron. Lett. 36, 1043-1044 (2000).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. Dinand and W. Sohler, “Theoretical modelling of optical amplification in Er-doped Ti:LiNbO3 waveguides,” IEEE J. Quantum Electron. 30, 1267-1276 (1994).
[CrossRef]

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhöfer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695-1706 (1996).
[CrossRef]

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135-138 (1990).
[CrossRef]

J. Appl. Phys. (6)

R. J. Holmes and D. M. Smyth, “Titanium diffusion into LiNbO3 as a function of stoichiometry,” J. Appl. Phys. 55, 3531-3535 (1984).
[CrossRef]

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, and G. Celloti, “Characterization of (Ti0.65Nb0.35)O2 compound as a source for Ti-diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62-70 (1983).
[CrossRef]

C. E. Rice and R. J. Holmes, “A new rutile structure solid-solution phase in the LiNb3O8-TiO2 system, and its role in Ti diffusion into LiNbO3,” J. Appl. Phys. 60, 3836-3839 (1986).
[CrossRef]

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468-3473 (1992).
[CrossRef]

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345-5350 (1995).
[CrossRef]

F. Caccavale, A. Morbiato, M. Natali, C. Sada, and F. Segato, “Correlation between optical and compositional properties of Ti:LiNbO3 channel optical waveguides,” J. Appl. Phys. 87, 1007-1011 (2000).
[CrossRef]

J. Cryst. Growth (3)

R. Mohan Kumar, F. Yamamoto, J. Ichikawa, H. Ryoken, I. Sakaguchi, X. Liu, M. Nakamura, K. Terabe, S. Takekawa, H. Haneda, and K. Kitamura, “SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide,” J. Cryst. Growth 287, 472-477 (2006).
[CrossRef]

M. Nakamura, S. Takekawa, S. Kurimura, K. Kitamura, and H. Nakajima, “Crystal growth and characterization of titanium-doped near-stoichiometric LiNbO3,” J. Cryst. Growth 264, 339-345 (2004).
[CrossRef]

Á. Péter, K. Polgár, L. Kovács, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284, 149-155 (2005).
[CrossRef]

J. Lightwave Technol. (1)

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700-708 (1987).
[CrossRef]

J. Mater. Sci. (1)

K. Sugii, K. Fukuma, and H. Iwasaki, “A study of titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods,” J. Mater. Sci. 13, 523-533 (1978).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

H. F. da Silva, J. M. Filho, S. C. Zilio, and F. D. Nunes, “Modelling Ti in-diffusion in LiNbO3,” J. Phys. Condens. Matter 9, 357-364 (1997).
[CrossRef]

Phys. Rev. B (1)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

Phys. Status Solidi A (1)

D. L. Zhang, G. G. Siu, and E. Y. B. Pun, “Raman scattering and x-ray diffraction study of near-stoichiometric Ti:LiNbO3 waveguides,” Phys. Status Solidi A 202, 2521-2530 (2005).
[CrossRef]

Other (4)

T. Fujiwara, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Second-order nonlinearity in stoichiometric LiNbO3 and LiTaO3,” in Technical Digest of Meeting on New Aspects of Nonlinear Optical Materials and Devices (IEEE, 1999), pp. 2-4.

H. Nakajima, M. Yuki, T. Oka, H. Yamauchi, S. Kurimura, I. Sakaguchi, and K. Kitamura, “Ti-diffused waveguides fabricated on stoichiometric LiNbO3,” in Technical Digest on Meeting on Photonics in Switching (Institute of Electronic, Information, and Communication Engineers, 2002), pp. 242-244.

A. Hellwig, H. Suche, R. Schor, and W. Sohler, “Titanium-indiffused waveguides in magnesium oxide doped stoichiometric lithium niobate (MgO:SLN),” in Proceedings of the 12th European Conference on Integrated Optics (ECIO'05) (European Optical Society, 2005), paper ThB2-5.

J. Crank, The Mathematics of Diffusion (Oxford U. Press, 1975), pp. 175-176.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of simultaneous use of VTE treatment and in-diffusion of a Ti strip into Z-cut congruent Li Nb O 3 . Also indicated is an x y z Cartesian frame fixed on the waveguide surface.

Fig. 2
Fig. 2

Image of NS Ti : Li Nb O 3 strip waveguide with initial Ti-strip width of 6 μ m . Insets show TM- and TE-polarized single-mode (at 1.5 μ m ) near-field patterns of the waveguide.

Fig. 3
Fig. 3

TM- and TE-polarized light intensity profiles (solid squares) along the width and depth directions of the 6 μ m wide NS strip waveguide. The solid curves in (a) and (c) represent the fitting results using a Gauss trial function. The solid curves in (b) and (d) denote the fitting results using a Hermite–Gauss function. The dotted curves are the numerical results from the beam propagation method.

Fig. 4
Fig. 4

(a) Measured SIMS profile (solid squares) of Ti concentration along the width direction of the NS Ti : Li Nb O 3 strip waveguide with initial Ti-strip width of 6 μ m . The solid curve represents the fit using a sum of two error functions. (b) Depth profiles of Ti 48 , O 16 , Nb 93 , and Li 7 SIMS signals from the same strip waveguide.

Fig. 5
Fig. 5

Plot of Ti profile (open squares) taken from Fig. 4b and redrawn in a linear scale. The solid curve represents the results of fitting the measured Ti profile to a complementary error function.

Fig. 6
Fig. 6

Plot of Ti diffusivity as a function of Li composition at 1050 ° C (open squares) and 1060 ° C (open circles).

Fig. 7
Fig. 7

Plot of 153 cm 1 E(TO) Raman peaks measured from the endfaces of a 6 μ m wide strip VTE waveguide and a congruent strip waveguide fabricated by in-diffusion of a 6 μ m wide, 95 nm thick Ti strip at 1030 ° C for 9 h in atmosphere. The solid curve and open circles were measured from the areas close to the surface of the VTE and congruent waveguides, respectively. The open squares were measured from the Ti-free area near the VTE crystal surface. For convenience, all the peaks have been normalized to the same height.

Fig. 8
Fig. 8

Plot of Ti-induced 153 cm 1 phonon FWHM broadening, Γ 0 , as a function of the Ti concentration C Ti , obtained from the depth micro-Raman analysis of one endface of the congruent strip waveguide involved in Fig. 7.

Fig. 9
Fig. 9

(a) Depth profile of Li-composition-related 153 cm 1 phonon broadening Γ in the VTE Ti : Li Nb O 3 strip waveguide. (b) Depth profile of ( [ Li Li ] + [ Ti Li ] ) ( [ Nb Nb ] + [ Ti Nb ] ) ratio (open circles) obtained from (a). The solid curve represents the fit to the experimental data using a complementary trial function. The fitted parameters are indicated.

Fig. 10
Fig. 10

Linear fit for Li 2 O content against the FWHM Γ of the 153 cm 1 E(TO) phonon in a pure Li Nb O 3 crystal. The solid squares are the experimental data taken from [17]. For convenience, these experimental data are also explicitly shown as a table. The straight line represents the linear fitting result.

Fig. 11
Fig. 11

Depth profiles of substrate refractive index n e and n o at a 1545 nm wavelength, calculated using the Li-composition profile expression indicated in Fig. 9b and the Li-composition-dependent Sellmeier equation reported by Schlarb and Betzler [1].

Fig. 12
Fig. 12

(a),(c) Calculated (solid curves) and measured (solid and open squares) TM n 0 and TE n 0 ( n = 0 , 1 ) mode sizes as a function of initial Ti-strip width W for the NS waveguides fabricated by VTE treatment and co-diffusion of the 115 nm thick Ti strip at 1060 ° C over 12 h . (b), (d) Calculated effective refractive index (at 1545 nm wavelength) versus initial Ti-strip width W.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

κ = ( 2 W x W F + W F W x ) 8 2 W y W F 3 π ( W y 2 + 2 W F 2 ) 2 exp ( W y 2 2 W F 2 ) [ 1 + α π exp ( α 2 ) ( 1 + erf ( α ) ) ] 2 ,
α = W y 2 2 W F W y 2 + 2 W F 2 ,
C Ti ( x , y = 0 ) = C 0 2 erf ( W 2 d x ) [ erf ( W + 2 x 2 d x ) + erf ( W 2 x 2 d x ) ] ,
C Ti ( y ) = C 0 erfc ( y d y ) .
C Ti ( x , y ) = C 0 1 2 erf ( W 2 d x ) [ erf ( W + 2 x 2 d x ) + erf ( W 2 x 2 d x ) ] erfc ( y d y ) .
C 0 0 + erfc ( y d y ) d y = C s τ , C s = ρ N A M ,
Δ n e , o ( x , y ) = Δ n ( 0 , 0 ) e , o 1 2 erf ( W 2 d x ) [ erf ( W + 2 x 2 d x ) + erf ( W 2 x 2 d x ) ] erfc ( y d y ) ,
n e b ( y ) = n e c L N + ( n e s L N n e c L N ) erfc ( y d e ) ,
n o b ( y ) = n o c L N + ( n o s L N n o c L N ) erfc ( y d o ) ,
n e , o ( x , y ) = { 1 y < 0 n e b , o b + Δ n e , o ( 0 , 0 ) g ( 2 x W ) f ( y d y ) y 0 } ,
g ( 2 x W ) = 1 2 erf ( W 2 d x ) [ erf ( W + 2 x 2 d x ) + erf ( W 2 x 2 d x ) ] ,
f ( y d y ) = erfc ( y d y ) .
n e , o 2 ( x , y ) { 1 y < 0 ( n e , o c L N ) 2 + 2 n e , o c L N ( n e , o s L N n e , o c L N ) erfc ( y d e , o ) + 2 n e , o c L N Δ n e , o ( 0 , 0 ) g ( 2 x W ) f ( y d y ) y 0 } .
ϕ n m ( x , y ) = 2 W x W y ψ n ( 2 x W x ) ψ 2 m + 1 ( 2 y W y ) ,
ψ j ( ξ ) = 1 2 j j ! π exp ( ξ 2 2 ) H j ( ξ ) ,
( 2 x 2 + α 2 2 y 2 ) ϕ n 0 ( x , y ) + k 0 2 n e , o 2 ( x , y ) ϕ n 0 ( x , y ) = β n 0 2 ϕ n 0 ( x , y ) ,
β n 0 2 = ϕ n 0 ( x , y ) ( 2 x 2 + α 2 2 y 2 ) ϕ n 0 ( x , y ) d x d y + k 0 2 n e , o 2 ( x , y ) ϕ n 0 2 ( x , y ) d x d y ϕ n 0 2 ( x , y ) d x d y .
β n 0 2 ( W x , W y ) = k 0 2 ( n e , o c L N ) 2 + 16 2 k 0 2 π n e , o c L N ( n e , o s L N n e , o c L N ) P 0 + 64 k 0 2 π n e , o c L N Δ n e , o ( 0 , 0 ) Q n R 0 2 n + 1 W x 2 α 2 3 W y 2 ,
P 0 = 1 W y 3 0 + erfc ( y d e , o ) exp ( 2 y 2 W y 2 ) y 2 d y ,
Q n = 1 W x 0 + z x g ( 2 x W ) ψ n 2 ( 2 x W x ) d x ,
R 0 = 1 W y 3 0 + f ( y d y ) exp ( 2 y 2 W y 2 ) y 2 d y .
N eff = λ 2 π β m .

Metrics