Abstract

The near-field behavior of a new plasmonic structure, the plasmonic micro-zone-plate (PMZP), is presented. The PMZP can realize superfocusing at a working distance on the micrometer scale and a resolving power beyond the diffraction limit. Compared with conventional Fresnel zone plates (CFZPs), its unique characteristics of a significantly elongated depth of focus (DOF) and focal length will make autofocusing easier for the relevant optical systems. These characteristics imply that it is possible to realize a free feedback control system for autofocusing systems in which probe scanning is performed with a constant working distance from the probe to the sample surface, provided that the flatness variation of the sample substrate is within the DOF. Moreover, unlike the CFZPs, there is no series of focal points appearing for beam propagation in the near-field region with a propagation distance ranging from λ to 8λ or even longer. In addition, transmission properties in the near-field region are investigated by means of a computational simulation based on a finite-difference time-domain numerical algorithm. Peak transmission wavelength shifts were observed while the metal film thickness was changed. Focusing characteristics were analyzed for different numerical apertures of the PMZPs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kirz, "Phase zone plates for x-rays and the extreme UV," J. Opt. Soc. Am. 64, 301-309 (1974).
    [CrossRef]
  2. C. D. Pfeifer, L. D. Ferris, and W. M. Yen, "Optical image formation with a Fresnel zone plate using vacuum-ultraviolet radiation," J. Opt. Soc. Am. 63, 91-95 (1973).
    [CrossRef]
  3. M. Bottema, "Fresnel-zone plate diffraction patterns," J. Opt. Soc. Am. 59, 1632-1638 (1969).
    [CrossRef]
  4. Q. Cao and J. Jahns, "Comprehensive focusing analysis of various Fresnel zone plates," J. Opt. Soc. Am. A 21, 561-571 (2004).
    [CrossRef]
  5. Q. Cao and J. Jahns, "Modified Fresnel zone plates that produce sharp Gaussian focal spots," J. Opt. Soc. Am. A 20, 1576-1581 (2003).
    [CrossRef]
  6. W. H. Southwell, "Validity of the Fresnel approximation in the near-field," J. Opt. Soc. Am. 71, 7-14 (1981).
    [CrossRef]
  7. C. J. R. Sheppard and M. Hrynevych, "Diffraction by a circular aperture: a generalization of Fresnel diffraction theory," J. Opt. Soc. Am. A 9, 274-281 (1992).
    [CrossRef]
  8. D. J. Stigliani, Jr., R. Mittra, and R. G. Semonin, "Resolving power of a zone plate," J. Opt. Soc. Am. 57, 610-613 (1967).
    [CrossRef]
  9. M. Young, "Zone plates and their aberrations," J. Opt. Soc. Am. 62, 972-976 (1972).
    [CrossRef]
  10. Lord Rayleigh, "Wave theory," in Encyclopedia Britannica, 9th ed.(1888), Vol. 24, p. 429 .
  11. J. A. Monsoriu, G. Saavedra, and W. D. Furlan, "Fractal zone plates with variable lacunarity," Opt. Express 12, 4227-4234 (2004).
    [CrossRef] [PubMed]
  12. L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef] [PubMed]
  13. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 39, 667-669 (1998).
    [CrossRef]
  14. A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Surface plasmon polaritons on metallic surfaces," Opt. Express 15, 183-197 (2007).
    [CrossRef] [PubMed]
  15. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005).
    [CrossRef] [PubMed]
  16. Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, and C. Wang, "Geometrical characterization issues of plasmonicnanostructures with depth-tuned grooves for beam shaping," Opt. Eng. 45108001 (2006).
    [CrossRef]
  17. Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C.-T. Wang, and X. Dong, "Transmission and reflection navigated optical probe with depth-tuned surface corrugations," Appl. Phys. B 86, 155-158 (2007).
    [CrossRef]
  18. Y. Fu, W. Zhou, L. E. N. Lim, C. Du, X. Lu, H. Shi, and C.-T. Wang, "Influences of V-shaped plasmonic nanostructures on transmission properties," Appl. Phys. B 86, 461-466 (2007).
    [CrossRef]
  19. D. Marks and P. S. Carney, "Near-field diffractive elements," Opt. Lett. 30, 1870-1872 (2005).
    [CrossRef] [PubMed]
  20. M. Born and E. Wolf, eds., Principles of Optics, 7th ed. (Cambridge U. Press, 1999), Chap. 1.
  21. M. J. Lockyear, A. P. Hibbins, and J. R.Sambles, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
  22. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts," Opt. Express 14, 6400-6413 (2006).
    [CrossRef]
  23. M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).
    [CrossRef] [PubMed]
  24. Theoretically, for the FDTD algorithm-based plasmonic effect study, it is better to set mesh size at less than 5nm for the calculation. However, our workstation, with a maximum memory size of 8GBytes, only allows the 3D FDTD calculation to have a minimum mesh size of 20nm because of the large simulation area of 12μm×12μm×3.4μm(x, y, z) in our simulation. The lateral dimension is fixed by our design. The propagation distance of 2μm after the exit plane in free space has to be so defined owing to the elongated focal length here.
    [CrossRef]
  25. A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A, Pure Appl. Opt. 5, S16-S50 (2003).
  26. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
    [CrossRef]
  27. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 2.
    [CrossRef]
  28. P. N. Prasad, ed., Nanophotonics (Wiley, 2004), Chap. 5.
  29. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef]
  30. Z. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
    [CrossRef] [PubMed]

2007

A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Surface plasmon polaritons on metallic surfaces," Opt. Express 15, 183-197 (2007).
[CrossRef] [PubMed]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C.-T. Wang, and X. Dong, "Transmission and reflection navigated optical probe with depth-tuned surface corrugations," Appl. Phys. B 86, 155-158 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, X. Lu, H. Shi, and C.-T. Wang, "Influences of V-shaped plasmonic nanostructures on transmission properties," Appl. Phys. B 86, 461-466 (2007).
[CrossRef]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

2006

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, and C. Wang, "Geometrical characterization issues of plasmonicnanostructures with depth-tuned grooves for beam shaping," Opt. Eng. 45108001 (2006).
[CrossRef]

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts," Opt. Express 14, 6400-6413 (2006).
[CrossRef]

2005

2004

J. A. Monsoriu, G. Saavedra, and W. D. Furlan, "Fractal zone plates with variable lacunarity," Opt. Express 12, 4227-4234 (2004).
[CrossRef] [PubMed]

Q. Cao and J. Jahns, "Comprehensive focusing analysis of various Fresnel zone plates," J. Opt. Soc. Am. A 21, 561-571 (2004).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, and J. R.Sambles, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).

P. N. Prasad, ed., Nanophotonics (Wiley, 2004), Chap. 5.

2003

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

Z. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef] [PubMed]

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A, Pure Appl. Opt. 5, S16-S50 (2003).

Q. Cao and J. Jahns, "Modified Fresnel zone plates that produce sharp Gaussian focal spots," J. Opt. Soc. Am. A 20, 1576-1581 (2003).
[CrossRef]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

2002

M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).
[CrossRef] [PubMed]

1999

M. Born and E. Wolf, eds., Principles of Optics, 7th ed. (Cambridge U. Press, 1999), Chap. 1.

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 39, 667-669 (1998).
[CrossRef]

1992

1988

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 2.
[CrossRef]

1981

1974

1973

1972

1969

1967

1888

Lord Rayleigh, "Wave theory," in Encyclopedia Britannica, 9th ed.(1888), Vol. 24, p. 429 .

Born, M.

M. Born and E. Wolf, eds., Principles of Optics, 7th ed. (Cambridge U. Press, 1999), Chap. 1.

Bottema, M.

Cao, Q.

Carney, P. S.

Choi, S. B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Choi, W. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Degiron, A.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Dong, X.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C.-T. Wang, and X. Dong, "Transmission and reflection navigated optical probe with depth-tuned surface corrugations," Appl. Phys. B 86, 155-158 (2007).
[CrossRef]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005).
[CrossRef] [PubMed]

Du, C.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C.-T. Wang, and X. Dong, "Transmission and reflection navigated optical probe with depth-tuned surface corrugations," Appl. Phys. B 86, 155-158 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, X. Lu, H. Shi, and C.-T. Wang, "Influences of V-shaped plasmonic nanostructures on transmission properties," Appl. Phys. B 86, 461-466 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, and C. Wang, "Geometrical characterization issues of plasmonicnanostructures with depth-tuned grooves for beam shaping," Opt. Eng. 45108001 (2006).
[CrossRef]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 39, 667-669 (1998).
[CrossRef]

Fang, N.

Z. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef] [PubMed]

Ferris, L. D.

Fu, Y.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C.-T. Wang, and X. Dong, "Transmission and reflection navigated optical probe with depth-tuned surface corrugations," Appl. Phys. B 86, 155-158 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, X. Lu, H. Shi, and C.-T. Wang, "Influences of V-shaped plasmonic nanostructures on transmission properties," Appl. Phys. B 86, 461-466 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, and C. Wang, "Geometrical characterization issues of plasmonicnanostructures with depth-tuned grooves for beam shaping," Opt. Eng. 45108001 (2006).
[CrossRef]

Furlan, W. D.

Gao, H.

García-Vidal, F. J.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 39, 667-669 (1998).
[CrossRef]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, and J. R.Sambles, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).

Hrynevych, M.

Jahns, J.

Kihm, H. W.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Kihm, J. E.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Kim, D. S.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Kim, H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Kim, J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Kirz, J.

Lee, B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Lee, K. G.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Lezec, H. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 39, 667-669 (1998).
[CrossRef]

Lienau, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Lim, L. E. N.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C.-T. Wang, and X. Dong, "Transmission and reflection navigated optical probe with depth-tuned surface corrugations," Appl. Phys. B 86, 155-158 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, X. Lu, H. Shi, and C.-T. Wang, "Influences of V-shaped plasmonic nanostructures on transmission properties," Appl. Phys. B 86, 461-466 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, and C. Wang, "Geometrical characterization issues of plasmonicnanostructures with depth-tuned grooves for beam shaping," Opt. Eng. 45108001 (2006).
[CrossRef]

Liu, Z.

Z. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef] [PubMed]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, and J. R.Sambles, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).

Lu, X.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, X. Lu, H. Shi, and C.-T. Wang, "Influences of V-shaped plasmonic nanostructures on transmission properties," Appl. Phys. B 86, 461-466 (2007).
[CrossRef]

Luo, X.

Mansuripur, M.

Marks, D.

Martin-Moreno, L.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

Mittra, R.

Moloney, J. V.

Monsoriu, J. A.

Park, D. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Park, Q. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Pfeifer, C. D.

Prasad, P. N.

P. N. Prasad, ed., Nanophotonics (Wiley, 2004), Chap. 5.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 2.
[CrossRef]

Rayleigh, Lord

Lord Rayleigh, "Wave theory," in Encyclopedia Britannica, 9th ed.(1888), Vol. 24, p. 429 .

Ropers, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Saavedra, G.

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, and J. R.Sambles, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).

Semonin, R. G.

Sheppard, C. J. R.

Shi, H.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, X. Lu, H. Shi, and C.-T. Wang, "Influences of V-shaped plasmonic nanostructures on transmission properties," Appl. Phys. B 86, 461-466 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C.-T. Wang, and X. Dong, "Transmission and reflection navigated optical probe with depth-tuned surface corrugations," Appl. Phys. B 86, 155-158 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, and C. Wang, "Geometrical characterization issues of plasmonicnanostructures with depth-tuned grooves for beam shaping," Opt. Eng. 45108001 (2006).
[CrossRef]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005).
[CrossRef] [PubMed]

Smolyaninov, I. I.

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A, Pure Appl. Opt. 5, S16-S50 (2003).

Southwell, W. H.

Stigliani, D. J.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 39, 667-669 (1998).
[CrossRef]

Treacy, M. M. J.

M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).
[CrossRef] [PubMed]

Wang, C.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, and C. Wang, "Geometrical characterization issues of plasmonicnanostructures with depth-tuned grooves for beam shaping," Opt. Eng. 45108001 (2006).
[CrossRef]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005).
[CrossRef] [PubMed]

Wang, C.-T.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C.-T. Wang, and X. Dong, "Transmission and reflection navigated optical probe with depth-tuned surface corrugations," Appl. Phys. B 86, 155-158 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, X. Lu, H. Shi, and C.-T. Wang, "Influences of V-shaped plasmonic nanostructures on transmission properties," Appl. Phys. B 86, 461-466 (2007).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, eds., Principles of Optics, 7th ed. (Cambridge U. Press, 1999), Chap. 1.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 39, 667-669 (1998).
[CrossRef]

Woo, D. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Xie, Y.

Yen, T.-J.

Z. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef] [PubMed]

Yen, W. M.

Yoon, Y. C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Young, M.

Zakharian, A. R.

Zayats, A. V.

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A, Pure Appl. Opt. 5, S16-S50 (2003).

Zhang, X.

Z. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef] [PubMed]

Zhou, W.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C.-T. Wang, and X. Dong, "Transmission and reflection navigated optical probe with depth-tuned surface corrugations," Appl. Phys. B 86, 155-158 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, X. Lu, H. Shi, and C.-T. Wang, "Influences of V-shaped plasmonic nanostructures on transmission properties," Appl. Phys. B 86, 461-466 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, and C. Wang, "Geometrical characterization issues of plasmonicnanostructures with depth-tuned grooves for beam shaping," Opt. Eng. 45108001 (2006).
[CrossRef]

Appl. Phys. B

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C.-T. Wang, and X. Dong, "Transmission and reflection navigated optical probe with depth-tuned surface corrugations," Appl. Phys. B 86, 155-158 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, X. Lu, H. Shi, and C.-T. Wang, "Influences of V-shaped plasmonic nanostructures on transmission properties," Appl. Phys. B 86, 461-466 (2007).
[CrossRef]

Appl. Phys. Lett.

M. J. Lockyear, A. P. Hibbins, and J. R.Sambles, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).

Z. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt.

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A, Pure Appl. Opt. 5, S16-S50 (2003).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Nat. Photonics

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 39, 667-669 (1998).
[CrossRef]

Opt. Eng.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, and C. Wang, "Geometrical characterization issues of plasmonicnanostructures with depth-tuned grooves for beam shaping," Opt. Eng. 45108001 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, eds., Principles of Optics, 7th ed. (Cambridge U. Press, 1999), Chap. 1.

Lord Rayleigh, "Wave theory," in Encyclopedia Britannica, 9th ed.(1888), Vol. 24, p. 429 .

Theoretically, for the FDTD algorithm-based plasmonic effect study, it is better to set mesh size at less than 5nm for the calculation. However, our workstation, with a maximum memory size of 8GBytes, only allows the 3D FDTD calculation to have a minimum mesh size of 20nm because of the large simulation area of 12μm×12μm×3.4μm(x, y, z) in our simulation. The lateral dimension is fixed by our design. The propagation distance of 2μm after the exit plane in free space has to be so defined owing to the elongated focal length here.
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 2.
[CrossRef]

P. N. Prasad, ed., Nanophotonics (Wiley, 2004), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of the plasmonic micro-zone-plate superfocusing with focal length f. It is illuminated by a plane wave with a 633 nm incident wavelength. The 300 nm thickness Ag film coated on quartz has permittivity ε m = ε m + i ε m = 17.6235 + 0.4204 i at λ 0 = 633 nm . The linear polarization state of the incident waves, denoted E and E , indicates the incident E field’s direction. The relevant E and H field components for the two polarization states are shown below the diagram. In our FDTD simulations the perfectly matched layer boundary condition was applied at the grid boundaries.

Fig. 2
Fig. 2

Electromagnetic field distribution for components of E y 2 , H x 2 , and H z 2 in a 3D view of yz xz, and xy, planes, respectively, for PMZPs with negative zones operating in E mode. The designed focal length and Ag film thickness of the PMZP are 1 μ m and 300 nm , respectively. Low transmission is observed for the E mode. (a)–(c) H x 2 in 3D view; (d)–(f) E y 2 in 3D view; (g)–(i) H z 2 in 3D view.

Fig. 3
Fig. 3

Electric field intensity E y 2 distribution along the x, y, and z axis, respectively for E mode propagation of the same PMZP as in Fig. 2. No focusing is formed in free space owing to the low transmission and dispersion of the zone areas.

Fig. 4
Fig. 4

Electromagnetic field distribution in the yz plane for components of (a) E x 2 , (b) E x 2 , (c) H y 2 , for the PMZP operating in the E field. The designed focal length and Ag film thickness of the PMZP are 1 μ m and 300 nm , respectively.

Fig. 5
Fig. 5

Example of a PMZP (negative) with outer diameter, Ag film thickness, and working wavelengths of 11.93 μ m , 300 nm , and 633 nm , respectively. Electric field distribution results were calculated by using a FDTD algorithm. The propagation direction is z. Electric field intensity E x 2 at (a) yz plane, (b) xz plane, and (c) xy plane. Electric field transmission in the line z = 1.25 μ m (calculated focal plane) at (d) xz plane, y = 0 ; (e) yz plane, x = 0 ; and (f) xy plane, z = 0 . The designed focal length and outmost zone width using scalar theory is f = 1 μ m and 53 nm , respectively. The calculated DOF is 700 nm (scalar theory designed value is 8.85 nm ). The site z = 0 is the exit plane of the Ag film.

Fig. 6
Fig. 6

Far-field electric field intensity E 2 = E x 2 + E y 2 + E z 2 distribution in the xy plane at y = 0 . (a) Logarithmic E 2 in the xz plane; (b) E 2 versus z for the PMZP opertating in the far-field region. The designed focal length and Ag film thickness of the PMZP are 1 μ m and 300 nm , respectively. Three peak transmissions at z = 17.08 μ m , z = 11.05 μ m , and z = 37.18 μ m , were found in the far field.

Fig. 7
Fig. 7

(a) Contour profile overlain on vector plot of the electric field intensity E x 2 distribution at the xz plane. Enlarged images of (b) dashed-frame area A, (c) dashed-dotted-frame area B.

Fig. 8
Fig. 8

(a) Contour profile overlain on vector plot of the electric field intensity | E x 2 | distribution at the xy plane. (b) Enlarged central area. The central vector pattern looks like a typical TM 21 mode pattern.

Fig. 9
Fig. 9

Electric field intensity E x 2 versus frequency and wavelength for PMZPs with different designed focal lengths. Inset, corresponding plot with a logarithm scale on the longitudinal axis.

Fig. 10
Fig. 10

Electric field intensity E x 2 versus frequency and wavelength for PMZPs tuned with different Ag film thickness. Inset, corresponding plot with a logarithm scale on the longitudinal axis.

Fig. 11
Fig. 11

Normalized intensity E x 2 distribution (a) along the x axis for the incident wavelength of 488 nm and the corresponding design focal length of the PMZP ranging from 0.1 to 6 μ m . Inset, enlarged central transmission peaks for the x position ranging from 0.35 to 0.35 μ m . (b) The same along the y axis for the incident wavelength of 488 nm and the corresponding design focal length of the PMZP ranging from 0.1 to 6 μ m . Inset, enlarged central transmission peaks for the y position ranging from 0.30 to 0.30 μ m . (c) Along thex axis for the incident wavelength of 633 nm and the corresponding design focal length of the PMZP ranging from 0.5 to 5 μ m . Inset, enlarged central transmission peaks for the x position ranging from 1 to 1 μ m . (d) Along the y axis for the incident wavelength of 633 nm and the corresponding design focal length of the PMZP ranging from 0.5 to 5 μ m . Inset, enlarged central transmission peaks for the y position ranging from 1 to 1 μ m . The zone number is N = 8 for all PMZPs.

Fig. 12
Fig. 12

Normalized intensity E x 2 distribution for the different incident wavelengths of 488, 530, 633, and 800 nm along the (a) x-axis, (b) y axis. Inset, enlarged central transmission peaks for the x position ranging from 0.6 to 0.6 μ m .

Fig. 13
Fig. 13

Focusing property for the PMZPs with the fixed dimension ( OD = 11.93 μ m ) designed for f = 1 μ m for the different incident wavelengths. It should be noted that the difference between this figure and Fig. 12 is that there the designed dimension of the PMZPs is varied for the different incident wavelengths. Inset, enlarged area of the central peaks.

Tables (1)

Tables Icon

Table 1 Elongated Focal Length and DOF for Different λ in

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

U n ( R ) = 1 λ A n f ρ 2 e j k ρ r d r d θ ,
E y = V ( z ) e i ( k 0 σ x x ± σ z z ω t ) ,
H x = U ( z ) e i ( k 0 σ x x ± σ z z ω t ) ,
H z = W ( z ) e i ( k 0 σ x x ± σ z z ω t ) ,
E x = U ( z ) e i ( k 0 σ x x ± σ z z ω t ) ,
E z = W ( z ) e i ( k 0 σ x x ± σ z z ω t ) ,
H y = V ( z ) e i ( k 0 σ x x ± σ z z ω t ) ,
E x = { U ( z ) e i [ k 0 σ x x ± σ air ( z h Quartz h Ag ) ] z h Quartz + h Ag (8) U ( z ) e i [ k 0 σ x x ± σ air ( z h Ag ) ] h Quartz + h Ag z h Ag , (9) U ( z ) e i [ k 0 σ x x ± σ air z ] h Ag z 0 (10)
E SP ( x , z ) = E 0 exp ( i k SP x k z z ) .
Δ k x = [ ω c 2 1 + ε m ( ε m ε m 1 ) 3 2 exp ( 2 k x 0 h ) ] r p ( k x 0 ) ,
1 2 π G ( x , y ) exp [ i ( Δ k x x + Δ k y y ) ] = s ( Δ k ) 2 ,

Metrics