Abstract

New classes of spectral sensors are emerging that have significant overlap in the band spectral response functions. While conventional sensors such as the Multispectral Thermal Images (MTI) or Landsat may have responses with a few percent overlap between adjacent bands, some of the emerging sensors can have more than 50% correlation among all spectral bands. The traditional geometrical models used to describe spectral data fail when such high levels of correlation exist. In this paper we present a generalized geometrical model that relies on functional analysis. We define a sensor space and a scene space that can be used to characterize the suitability of a sensor for a particular spectral sensing task. We demonstrate that classifiers based on first-order distance and angle metrics fail for sensors with highly correlated bands unless appropriate preprocessing is carried out. We further show that second-order statistical classifiers are largely immune to many of the problems introduced by the correlated band responses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription