Abstract

We study theoretically the light scattering from metal wires of arbitrary cross section, with emphasis on the occurrence of plasmon resonances. We make use of the rigorous formulation of the Green’s theorem surface integral equations of the electromagnetic wave scattering, written for an arbitrary number of scatterers described in parametric form. We have investigated the scattering cross sections for nanowires of various shapes (circle, triangles, rectangles, and stars), either isolated or interacting. The relationship between the cross sectional shape and the spectral dependence of the plasmon resonances is studied, including the impact of nanoparticle coupling in the case of interacting scatterers. Near-field intensity maps are also shown that shed light on the plasmon resonance features and the occurrence of local field enhancements.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  2. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  4. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
    [CrossRef] [PubMed]
  5. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
    [CrossRef] [PubMed]
  6. T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Hankel, and V. Sandoghdar, "Optical microscopy via spectral modifications of a nanoantenna," Phys. Rev. Lett. 95, 200801 (2005).
    [CrossRef] [PubMed]
  7. A. Ono, J. Kato, and S. Kawata, "Subwavelength optical imaging through a metallic nanorod array," Phys. Rev. Lett. 95, 267407 (2005).
    [CrossRef]
  8. A. Madrazo and M. Nieto-Vesperinas, "Scattering of electromagnetic waves from a cylinder in front of a conducting plane," J. Opt. Soc. Am. A 12, 1268-1309 (1995).
    [CrossRef]
  9. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
    [CrossRef]
  10. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
    [CrossRef]
  11. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
    [CrossRef]
  12. K. L. Shuford, M. A. Ratner, and G. C. Schatz, "Multipolar excitation in triangular nanoprisms," J. Chem. Phys. 123, 114713 (2005).
    [CrossRef]
  13. U. Hohenester and J. Krenn, "Surface plasmon resonances of a single and coupled metallic nanoparticles: A boundary integral method approach," Phys. Rev. B 72, 195429 (2005).
    [CrossRef]
  14. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 14, 9988-9999 (2006).
    [CrossRef] [PubMed]
  15. F. Moreno, F. González, and J. M. Saiz, "Plasmon spectroscopy of metallic nanoparticles above flat dielectric substrates," Opt. Lett. 31, 1902-1904 (2006).
    [CrossRef] [PubMed]
  16. S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, "Plasmon excitation in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
    [CrossRef]
  17. V. Giannini, J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Collective model for the surface-plasmon-mediated electromagnetic emission from molecular layers on metallic nanostructures," Phys. Rev. B 75, 235447 (2007).
    [CrossRef]
  18. E. J. Zeman and G. C. Schatz, "An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd," J. Phys. C 91, 634-643 (1987).
  19. J. A. Sánchez-Gil and J. V. García-Ramos, "Local and average electromagnetic enhancement in surface-enhanced Raman scattering from self-affine fractal metal substrates with nanoscale irregularities," Chem. Phys. Lett. 367, 361-366 (2003).
    [CrossRef]
  20. H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
    [CrossRef]
  21. S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
    [CrossRef] [PubMed]
  22. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perlman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
    [CrossRef]
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
    [CrossRef]
  24. A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory," Phys. Rev. B 73, 155404 (2006).
    [CrossRef]
  25. C. Girard and A. Dereux, "Near-field optics theories," Rep. Prog. Phys. 59, 657-699 (1996).
    [CrossRef]
  26. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendéz, "Enhanced backscattering of light from a random grating," Ann. Phys. (N.Y.) 203, 255-307 (1990).
    [CrossRef]
  27. J. A. Sánchez-Gil and M. Nieto-Vesperinas, "Light scattering from random rough dielectric surfaces," J. Opt. Soc. Am. A 8, 1270-1286 (1991).
    [CrossRef]
  28. F. J. García de Abajo and J. Aizpurua, "Numerical simulation of electron energy loss near inhomogeneous dielectrics," Phys. Rev. B 56, 15873-15884 (1997).
    [CrossRef]
  29. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, 1991).
  30. J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Near-field electromagnetic wave scattering from random self-affine fractal metal surfaces: Spectral dependence of local field enhancement and their statistics in connection with surface-enhanced Raman scattering," Phys. Rev. B 62, 10515-10525 (2000).
    [CrossRef]
  31. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  32. A. Mendoza-Suárez and E. R. Méndez, "Light scattering by a reentrant fractal surface," Appl. Opt. 36, 3521-3531 (1997).
    [CrossRef] [PubMed]
  33. C. I. Valencia, E. R. Méndez, and B. Mendoza, "Second-harmonic generation in the scattering of light by two-dimensional particles," J. Opt. Soc. Am. B 20, 2150-2161 (2003).
    [CrossRef]
  34. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Spectral resonances of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2001).
    [CrossRef]
  35. C. L. Nehl, H. Liao, and H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano Lett. 6, 683-688 (2006).
    [CrossRef] [PubMed]
  36. J. A. Sánchez-Gil, "Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: Shape versus Anderson-localized resonances," Phys. Rev. B 68, 113410 (2003).
    [CrossRef]
  37. J. P. Kottmann and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 665-663 (2001).
    [CrossRef]

2007 (1)

V. Giannini, J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Collective model for the surface-plasmon-mediated electromagnetic emission from molecular layers on metallic nanostructures," Phys. Rev. B 75, 235447 (2007).
[CrossRef]

2006 (6)

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, "Plasmon excitation in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
[CrossRef]

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory," Phys. Rev. B 73, 155404 (2006).
[CrossRef]

C. L. Nehl, H. Liao, and H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano Lett. 6, 683-688 (2006).
[CrossRef] [PubMed]

F. Moreno, F. González, and J. M. Saiz, "Plasmon spectroscopy of metallic nanoparticles above flat dielectric substrates," Opt. Lett. 31, 1902-1904 (2006).
[CrossRef] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 14, 9988-9999 (2006).
[CrossRef] [PubMed]

2005 (9)

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Hankel, and V. Sandoghdar, "Optical microscopy via spectral modifications of a nanoantenna," Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

A. Ono, J. Kato, and S. Kawata, "Subwavelength optical imaging through a metallic nanorod array," Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

K. L. Shuford, M. A. Ratner, and G. C. Schatz, "Multipolar excitation in triangular nanoprisms," J. Chem. Phys. 123, 114713 (2005).
[CrossRef]

U. Hohenester and J. Krenn, "Surface plasmon resonances of a single and coupled metallic nanoparticles: A boundary integral method approach," Phys. Rev. B 72, 195429 (2005).
[CrossRef]

2003 (4)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

J. A. Sánchez-Gil and J. V. García-Ramos, "Local and average electromagnetic enhancement in surface-enhanced Raman scattering from self-affine fractal metal substrates with nanoscale irregularities," Chem. Phys. Lett. 367, 361-366 (2003).
[CrossRef]

C. I. Valencia, E. R. Méndez, and B. Mendoza, "Second-harmonic generation in the scattering of light by two-dimensional particles," J. Opt. Soc. Am. B 20, 2150-2161 (2003).
[CrossRef]

J. A. Sánchez-Gil, "Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: Shape versus Anderson-localized resonances," Phys. Rev. B 68, 113410 (2003).
[CrossRef]

2001 (3)

J. P. Kottmann and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 665-663 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Spectral resonances of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

2000 (2)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Near-field electromagnetic wave scattering from random self-affine fractal metal surfaces: Spectral dependence of local field enhancement and their statistics in connection with surface-enhanced Raman scattering," Phys. Rev. B 62, 10515-10525 (2000).
[CrossRef]

1997 (4)

F. J. García de Abajo and J. Aizpurua, "Numerical simulation of electron energy loss near inhomogeneous dielectrics," Phys. Rev. B 56, 15873-15884 (1997).
[CrossRef]

A. Mendoza-Suárez and E. R. Méndez, "Light scattering by a reentrant fractal surface," Appl. Opt. 36, 3521-3531 (1997).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perlman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

1996 (1)

C. Girard and A. Dereux, "Near-field optics theories," Rep. Prog. Phys. 59, 657-699 (1996).
[CrossRef]

1995 (1)

A. Madrazo and M. Nieto-Vesperinas, "Scattering of electromagnetic waves from a cylinder in front of a conducting plane," J. Opt. Soc. Am. A 12, 1268-1309 (1995).
[CrossRef]

1991 (1)

1990 (1)

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendéz, "Enhanced backscattering of light from a random grating," Ann. Phys. (N.Y.) 203, 255-307 (1990).
[CrossRef]

1987 (1)

E. J. Zeman and G. C. Schatz, "An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd," J. Phys. C 91, 634-643 (1987).

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Aizpurua, J.

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 14, 9988-9999 (2006).
[CrossRef] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

F. J. García de Abajo and J. Aizpurua, "Numerical simulation of electron energy loss near inhomogeneous dielectrics," Phys. Rev. B 56, 15873-15884 (1997).
[CrossRef]

Apell, P.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Atwater, H. A.

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Beermann, J.

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory," Phys. Rev. B 73, 155404 (2006).
[CrossRef]

Blanco, L. A.

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, "Plasmon excitation in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Bozhevolnyi, S. I.

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory," Phys. Rev. B 73, 155404 (2006).
[CrossRef]

Bryant, G. W.

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 14, 9988-9999 (2006).
[CrossRef] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Burger, S.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Hankel, and V. Sandoghdar, "Optical microscopy via spectral modifications of a nanoantenna," Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perlman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Dereux, A.

C. Girard and A. Dereux, "Near-field optics theories," Rep. Prog. Phys. 59, 657-699 (1996).
[CrossRef]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perlman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

García de Abajo, F. J.

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 14, 9988-9999 (2006).
[CrossRef] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

F. J. García de Abajo and J. Aizpurua, "Numerical simulation of electron energy loss near inhomogeneous dielectrics," Phys. Rev. B 56, 15873-15884 (1997).
[CrossRef]

García-Ramos, J. V.

V. Giannini, J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Collective model for the surface-plasmon-mediated electromagnetic emission from molecular layers on metallic nanostructures," Phys. Rev. B 75, 235447 (2007).
[CrossRef]

J. A. Sánchez-Gil and J. V. García-Ramos, "Local and average electromagnetic enhancement in surface-enhanced Raman scattering from self-affine fractal metal substrates with nanoscale irregularities," Chem. Phys. Lett. 367, 361-366 (2003).
[CrossRef]

J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Near-field electromagnetic wave scattering from random self-affine fractal metal surfaces: Spectral dependence of local field enhancement and their statistics in connection with surface-enhanced Raman scattering," Phys. Rev. B 62, 10515-10525 (2000).
[CrossRef]

Garcia-Vidal, F. J.

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory," Phys. Rev. B 73, 155404 (2006).
[CrossRef]

Giannini, V.

V. Giannini, J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Collective model for the surface-plasmon-mediated electromagnetic emission from molecular layers on metallic nanostructures," Phys. Rev. B 75, 235447 (2007).
[CrossRef]

Girard, C.

C. Girard and A. Dereux, "Near-field optics theories," Rep. Prog. Phys. 59, 657-699 (1996).
[CrossRef]

González, F.

Hafner, H.

C. L. Nehl, H. Liao, and H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano Lett. 6, 683-688 (2006).
[CrossRef] [PubMed]

Håkanson, U.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Hankel, and V. Sandoghdar, "Optical microscopy via spectral modifications of a nanoantenna," Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Hankel, C.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Hankel, and V. Sandoghdar, "Optical microscopy via spectral modifications of a nanoantenna," Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Hecht, B.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Hohenau, A.

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory," Phys. Rev. B 73, 155404 (2006).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Hohenester, U.

U. Hohenester and J. Krenn, "Surface plasmon resonances of a single and coupled metallic nanoparticles: A boundary integral method approach," Phys. Rev. B 72, 195429 (2005).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perlman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kalkbrenner, T.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Hankel, and V. Sandoghdar, "Optical microscopy via spectral modifications of a nanoantenna," Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Käll, M.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Kato, J.

A. Ono, J. Kato, and S. Kawata, "Subwavelength optical imaging through a metallic nanorod array," Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

Kawata, S.

A. Ono, J. Kato, and S. Kawata, "Subwavelength optical imaging through a metallic nanorod array," Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perlman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perlman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Kottmann, J. P.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Spectral resonances of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2001).
[CrossRef]

J. P. Kottmann and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 665-663 (2001).
[CrossRef]

Krenn, J.

U. Hohenester and J. Krenn, "Surface plasmon resonances of a single and coupled metallic nanoparticles: A boundary integral method approach," Phys. Rev. B 72, 195429 (2005).
[CrossRef]

Krenn, J. R.

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory," Phys. Rev. B 73, 155404 (2006).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Liao, H.

C. L. Nehl, H. Liao, and H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano Lett. 6, 683-688 (2006).
[CrossRef] [PubMed]

Madrazo, A.

A. Madrazo and M. Nieto-Vesperinas, "Scattering of electromagnetic waves from a cylinder in front of a conducting plane," J. Opt. Soc. Am. A 12, 1268-1309 (1995).
[CrossRef]

Maier, S. A.

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Maradudin, A. A.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendéz, "Enhanced backscattering of light from a random grating," Ann. Phys. (N.Y.) 203, 255-307 (1990).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

J. P. Kottmann and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 665-663 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Spectral resonances of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

Martin-Moreno, L.

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory," Phys. Rev. B 73, 155404 (2006).
[CrossRef]

McGurn, A. R.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendéz, "Enhanced backscattering of light from a random grating," Ann. Phys. (N.Y.) 203, 255-307 (1990).
[CrossRef]

Mendéz, E. R.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendéz, "Enhanced backscattering of light from a random grating," Ann. Phys. (N.Y.) 203, 255-307 (1990).
[CrossRef]

Méndez, E. R.

V. Giannini, J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Collective model for the surface-plasmon-mediated electromagnetic emission from molecular layers on metallic nanostructures," Phys. Rev. B 75, 235447 (2007).
[CrossRef]

C. I. Valencia, E. R. Méndez, and B. Mendoza, "Second-harmonic generation in the scattering of light by two-dimensional particles," J. Opt. Soc. Am. B 20, 2150-2161 (2003).
[CrossRef]

J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Near-field electromagnetic wave scattering from random self-affine fractal metal surfaces: Spectral dependence of local field enhancement and their statistics in connection with surface-enhanced Raman scattering," Phys. Rev. B 62, 10515-10525 (2000).
[CrossRef]

A. Mendoza-Suárez and E. R. Méndez, "Light scattering by a reentrant fractal surface," Appl. Opt. 36, 3521-3531 (1997).
[CrossRef] [PubMed]

Mendoza, B.

Mendoza-Suárez, A.

Michel, T.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendéz, "Enhanced backscattering of light from a random grating," Ann. Phys. (N.Y.) 203, 255-307 (1990).
[CrossRef]

Moreno, F.

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Nehl, C. L.

C. L. Nehl, H. Liao, and H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano Lett. 6, 683-688 (2006).
[CrossRef] [PubMed]

Nie, S.

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, "Plasmon excitation in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
[CrossRef]

A. Madrazo and M. Nieto-Vesperinas, "Scattering of electromagnetic waves from a cylinder in front of a conducting plane," J. Opt. Soc. Am. A 12, 1268-1309 (1995).
[CrossRef]

J. A. Sánchez-Gil and M. Nieto-Vesperinas, "Light scattering from random rough dielectric surfaces," J. Opt. Soc. Am. A 8, 1270-1286 (1991).
[CrossRef]

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, 1991).

Ono, A.

A. Ono, J. Kato, and S. Kawata, "Subwavelength optical imaging through a metallic nanorod array," Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

Ozbay, E.

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Perlman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perlman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Ratner, M. A.

K. L. Shuford, M. A. Ratner, and G. C. Schatz, "Multipolar excitation in triangular nanoprisms," J. Chem. Phys. 123, 114713 (2005).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Rodrigo, S. G.

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory," Phys. Rev. B 73, 155404 (2006).
[CrossRef]

Romero, I.

Saiz, J. M.

Sánchez-Gil, J. A.

V. Giannini, J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Collective model for the surface-plasmon-mediated electromagnetic emission from molecular layers on metallic nanostructures," Phys. Rev. B 75, 235447 (2007).
[CrossRef]

J. A. Sánchez-Gil and J. V. García-Ramos, "Local and average electromagnetic enhancement in surface-enhanced Raman scattering from self-affine fractal metal substrates with nanoscale irregularities," Chem. Phys. Lett. 367, 361-366 (2003).
[CrossRef]

J. A. Sánchez-Gil, "Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: Shape versus Anderson-localized resonances," Phys. Rev. B 68, 113410 (2003).
[CrossRef]

J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Near-field electromagnetic wave scattering from random self-affine fractal metal surfaces: Spectral dependence of local field enhancement and their statistics in connection with surface-enhanced Raman scattering," Phys. Rev. B 62, 10515-10525 (2000).
[CrossRef]

J. A. Sánchez-Gil and M. Nieto-Vesperinas, "Light scattering from random rough dielectric surfaces," J. Opt. Soc. Am. A 8, 1270-1286 (1991).
[CrossRef]

Sandoghdar, V.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Hankel, and V. Sandoghdar, "Optical microscopy via spectral modifications of a nanoantenna," Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Sburlan, S. E.

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, "Plasmon excitation in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
[CrossRef]

Schädle, A.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Hankel, and V. Sandoghdar, "Optical microscopy via spectral modifications of a nanoantenna," Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Schatz, G. C.

K. L. Shuford, M. A. Ratner, and G. C. Schatz, "Multipolar excitation in triangular nanoprisms," J. Chem. Phys. 123, 114713 (2005).
[CrossRef]

E. J. Zeman and G. C. Schatz, "An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd," J. Phys. C 91, 634-643 (1987).

Schultz, S.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Spectral resonances of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2001).
[CrossRef]

Shuford, K. L.

K. L. Shuford, M. A. Ratner, and G. C. Schatz, "Multipolar excitation in triangular nanoprisms," J. Chem. Phys. 123, 114713 (2005).
[CrossRef]

Smith, D. R.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Spectral resonances of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Valencia, C. I.

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perlman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Xu, H.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Zeman, E. J.

E. J. Zeman and G. C. Schatz, "An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd," J. Phys. C 91, 634-643 (1987).

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Ann. Phys. (N.Y.) (1)

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendéz, "Enhanced backscattering of light from a random grating," Ann. Phys. (N.Y.) 203, 255-307 (1990).
[CrossRef]

Appl. Opt. (1)

Chem. Phys. Lett. (1)

J. A. Sánchez-Gil and J. V. García-Ramos, "Local and average electromagnetic enhancement in surface-enhanced Raman scattering from self-affine fractal metal substrates with nanoscale irregularities," Chem. Phys. Lett. 367, 361-366 (2003).
[CrossRef]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Chem. Phys. (1)

K. L. Shuford, M. A. Ratner, and G. C. Schatz, "Multipolar excitation in triangular nanoprisms," J. Chem. Phys. 123, 114713 (2005).
[CrossRef]

J. Opt. Soc. Am. A (2)

A. Madrazo and M. Nieto-Vesperinas, "Scattering of electromagnetic waves from a cylinder in front of a conducting plane," J. Opt. Soc. Am. A 12, 1268-1309 (1995).
[CrossRef]

J. A. Sánchez-Gil and M. Nieto-Vesperinas, "Light scattering from random rough dielectric surfaces," J. Opt. Soc. Am. A 8, 1270-1286 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. C (1)

E. J. Zeman and G. C. Schatz, "An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd," J. Phys. C 91, 634-643 (1987).

Nano Lett. (1)

C. L. Nehl, H. Liao, and H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano Lett. 6, 683-688 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (10)

J. A. Sánchez-Gil, "Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: Shape versus Anderson-localized resonances," Phys. Rev. B 68, 113410 (2003).
[CrossRef]

F. J. García de Abajo and J. Aizpurua, "Numerical simulation of electron energy loss near inhomogeneous dielectrics," Phys. Rev. B 56, 15873-15884 (1997).
[CrossRef]

J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Near-field electromagnetic wave scattering from random self-affine fractal metal surfaces: Spectral dependence of local field enhancement and their statistics in connection with surface-enhanced Raman scattering," Phys. Rev. B 62, 10515-10525 (2000).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory," Phys. Rev. B 73, 155404 (2006).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

U. Hohenester and J. Krenn, "Surface plasmon resonances of a single and coupled metallic nanoparticles: A boundary integral method approach," Phys. Rev. B 72, 195429 (2005).
[CrossRef]

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, "Plasmon excitation in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
[CrossRef]

V. Giannini, J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Collective model for the surface-plasmon-mediated electromagnetic emission from molecular layers on metallic nanostructures," Phys. Rev. B 75, 235447 (2007).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

Phys. Rev. E (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Phys. Rev. Lett. (4)

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Hankel, and V. Sandoghdar, "Optical microscopy via spectral modifications of a nanoantenna," Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

A. Ono, J. Kato, and S. Kawata, "Subwavelength optical imaging through a metallic nanorod array," Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perlman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Rep. Prog. Phys. (1)

C. Girard and A. Dereux, "Near-field optics theories," Rep. Prog. Phys. 59, 657-699 (1996).
[CrossRef]

Science (4)

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of the scattering geometry.

Fig. 2
Fig. 2

Scattering cross sections for a 20 nm isosceles right triangle of Ag for p polarization (blue curve) and for s polarization (red curve).

Fig. 3
Fig. 3

Near-electric-field amplitude distribution in logarithmic scale of light scattering from a 20 nm isosceles right triangle of Ag for two plasmon resonances (p polarization). The amplitude of the incident plane wave is unity and impinges on the top at (a) λ = 403 nm , (b) λ = 358 nm . (c) Surface electric field amplitude at the base corner of the triangle shown in (a) for different number of sampling points (of the entire triangle perimeter) N p = 100 (dashed curve), 200 (dotted–dashed curve), 600 (dark solid curve), and 1200 (light solid curve).

Fig. 4
Fig. 4

Charge distribution for two plasmon resonances (p polarization) at (a) λ = 403 nm , and at (b) λ = 358 nm (b). These charge distributions correspond to a specific time when the electric field amplitude is maximum at the corners. Far field intensity at (c) λ = 403 nm , (d) λ = 358 nm .

Fig. 5
Fig. 5

Near-field amplitude distributions in logarithmic scale for a 20 nm isosceles right triangle of Ag. The amplitude of the incident plane wave is unity and impinges on the top: (a), (b) Magnetic field in p polarization, (c), (d) electric field in s polarization; (a), (c) λ = 403 nm ; (b), (d) λ = 358 nm .

Fig. 6
Fig. 6

(a) SCS for a Ag rectangular particle with 100 nm base and 20 nm height, illuminated on the top in p polarization (blue curve) or in s polarization (red curve). (b) Surface magnetic field intensity for different radius r of the rounded corners: perfect corners (dashed black curve); r = 0.25 nm (green curve); r = 1 nm (red curve); r = 4 nm (blue curve). The s variable is the arc length, with origin at the down half-base, in a clockwise direction.

Fig. 7
Fig. 7

Surface normal (a) and tangential (b) electric field amplitude for Ag rectangular particle with 100 nm base and 20 nm height, illuminated on the top, s variable is the arc length (see Fig. 6). (c) Charge distribution: These field and charge distributions correspond to a specific time when the electric field amplitude is maximum at the corners. (d) Far-field intensity with θ = 0 ° the forward direction, λ = 454 nm (main resonance).

Fig. 8
Fig. 8

Near-electric-field intensity in log 10 scale, normalized to the incident field, for a Ag rectangular particle with 100 nm base and 20 nm height. The plane wave impinges on the top ( θ i = 0 ° ) : (a) λ = 454 nm (main resonance, p polarization); (b) λ = 900 nm (p polarization); (c) λ = 454 nm (s polarization).

Fig. 9
Fig. 9

Normalized SCS in p polarization for a Ag rectangular particle with 20 nm height as a function of the base length L: (a) top incidence ( θ i = 0 ° ) ; (b) oblique incidence ( θ i = 45 ° ) ; (c) lateral incidence ( θ i = 90 ° ) .

Fig. 10
Fig. 10

(a) Near-electric-field intensity ( log 10 scale) in p polarization, normalized to the incident field, for a Ag rectangular particle with 250 nm base and 20 nm height. The plane wave impinges on the top ( θ i = 45 ° ) at the second-order resonance λ = 459 nm . (b) Charge distribution obtained as in Fig. 7c.

Fig. 11
Fig. 11

(a) SCS for a Ag six-pointed star with average radius of 100 nm and oscillation amplitude (see text) of 10 nm (blue curve). (b), (c) Electric-near-field intensity distribution in log 10 scale at λ = 393 nm (main resonance) for two incident directions as denoted by arrows: (b) θ i = 0 ° , (c) θ i = 90 ° .

Fig. 12
Fig. 12

(a), (b) SCS for two Ag cylinders (p polarization) with 25 nm radius for different separation, illuminated on the top (a) or on the left (b). (c), (d) Near-electric-field intensity at the main resonances for a separation of 5 nm ( log 10 scale normalized to the incident field, p polarization): (c) λ = 380 nm ; (d) λ = 372 nm (p polarization), illumination direction as indicated. (e) SCS for a separation of 5 nm , with illumination (see inset) on the top (black solid curve), on the left (red dashed curve), and SCS for only one cylinder (blue dotted–dashed curve).

Fig. 13
Fig. 13

(a) SCS for a Ag rectangular dimer ( 100 nm base and 20 nm height) as a function of the gap width Δ, for p-polarized incidence at θ i = 0 ° (perpendicular to the dimer axis). (b) Near-electric-field intensity ( log 10 scale) normalized to the incident field, for a p-polarized plane wave impinging on the top at λ = 573 nm (main resonance). (c) Charge distribution on the surface of the rectangle dimer as in (b). (d) SCS for a Ag rectangular dimer with 100 nm base, 20 nm height, and 5 nm gap, illuminated on the top in p polarization (blue solid curve) and in s polarization (red curve). The SCS for a single rectangle (p polarization) is also shown (blue dashed curve).

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

H ( i ) ( r ) + 1 4 π j Γ j { H ( o u t ) [ R j ( t ) ] G ( o u t ) [ r , R j ( t ) ] N j G ( o u t ) [ r , R j ( t ) ] H ( o u t ) ( R j ) N j } d t = H ( o u t ) ( r ) , r outside ,
= 0 , r inside ,
1 4 π Γ j { H ( i n ) [ R j ( t ) ] G j ( i n ) [ r , R j ( t ) ] N j G j ( i n ) [ r , R j ( t ) ] H ( i n ) ( R j ) N j } d t = 0 , r outside Γ j ,
= H ( i n ) ( r ) , r inside Γ j .
N j = [ η j ( t ) x + ξ j ( t ) z ] ,
G ( o u t ) ( r , R ) = i π H 0 ( 1 ) [ ω c ε ( o u t ) r R ] ,
G j ( i n ) ( r , R ) = i π H 0 ( 1 ) [ ω c ε j ( i n ) r R ] .
H j ( t ) = H ( o u t ) ( r ) r R j + ( t ) = H ( i n ) ( r ) r R j ( t ) ,
L j ( t ) = [ H ( o u t ) ( r ) N j ] r R j + ( t ) = ε ( o u t ) ε j ( i n ) [ H ( i n ) ( r ) N j ] r R j ( t ) ,
H ( i ) ( R l ) + 1 4 π j Γ j { H j ( t ) G ( o u t ) [ R l , R j ( t ) ] N j G ( o u t ) [ R l , R j ( t ) ] L j ( t ) } d t = H l ( t ) , l = 1 , , N ;
1 4 π Γ j { H j ( t ) G ( i n ) [ R l , R j ( t ) ] N j ε j ( i n ) ( ω ) ε ( o u t ) ( ω ) G ( i n ) [ R l , R j ( t ) ] L j ( t ) } d t = 0 , l , j = 1 , , N .
E ( i ) ( r ) + 1 4 π j Γ j { E ( o u t ) [ R j ( t ) ] G ( o u t ) [ r , R j ( t ) ] N j G ( o u t ) [ r , R j ( t ) ] E ( o u t ) ( R j ) N j } d t = E ( o u t ) ( r ) , r outside ,
= 0 , r inside ,
1 4 π Γ j { E ( i n ) [ R j ( t ) ] G j ( i n ) [ r , R j ( t ) ] N j G j ( i n ) [ r , R j ( t ) ] E ( i n ) ( R j ) N j } d t = 0 , r outside Γ j ,
= E ( i n ) ( r ) , r inside Γ j .
E j ( t ) = E ( o u t ) ( r ) r R j + ( t ) = E ( i n ) ( r ) r R j ( t ) ,
F j ( t ) = [ E ( o u t ) ( r ) N j ] r R j + ( t ) = [ E ( i n ) ( r ) N j ] r R j ( t ) ,
E ( i ) ( R l ) + 1 4 π j Γ j { E j ( t ) G ( o u t ) [ R l , R j ( t ) ] N j G ( o u t ) [ R l , R j ( t ) ] F j ( t ) } d t = E l ( t ) , l = 1 , , N ,
1 4 π Γ j { E j ( t ) G ( i n ) [ R l , R j ( t ) ] N j G ( i n ) [ R l , R j ( t ) ] F j ( t ) } d t = 0 , l , j = 1 , , N .
× H = i ω c ε E .
E x ( p , o u t ) ( r ) = E x ( p , i ) ( r ) i c 4 π ω ε ( o u t ) j Γ { H ( t ) 2 G ( o u t ) [ r , R j ( t ) ] z N j G ( o u t ) z ( r , R j ( t ) ) L j ( t ) } d t ,
E y ( p , o u t ) ( r ) = 0 ,
E z ( p , o u t ) ( r ) = E z ( p , i ) ( r ) i c 4 π ω ε ( o u t ) Γ { H j ( t ) 2 G ( o u t ) [ r , R j ( t ) ] x N j G ( o u t ) [ r , R j ( t ) ] x L j ( t ) } d t .
E n ( p , o u t ) [ R j ( t ) ] = i c γ ω ε ( o u t ) d H j ( t ) d t ,
E t ( p , o u t ) [ R j ( t ) ] = i c γ ω ε ( o u t ) L j ( t ) ,
S ( p ) ( θ ) = ı ( c 8 π ω ε ( o u t ) ) 1 2 × j Γ j { ı ω c ε ( o u t ) [ η j ( t ) sin θ ξ j ( t ) cos θ ] H j ( t ) L j ( t ) } × exp { ı ω c ε ( o u t ) [ ξ j ( t ) sin θ + η j ( t ) cos θ ] } d t ,
S ( s ) ( θ ) = ı ( c ε ( o u t ) 8 π ω ) 1 2 × j Γ j { ı ω c ε ( o u t ) [ η j ( t ) sin θ ξ j ( t ) cos θ ] E j ( t ) F j ( t ) } × exp { ı ω c ε ( o u t ) [ ξ j ( t ) sin θ + η j ( t ) cos θ ] } d t .
Q s c a ( p , s ) ( ω ) = 0 2 π S ( p , s ) ( θ ω ) 2 E 0 i 2 d θ ,
Q e x t ( p , s ) ( ω ) = 8 π c ω R e [ S ( p , s ) ( θ = θ f o r w a r d ) ] ,
Q a b s ( p , s ) ( ω ) = Q e x t ( p , s ) ( ω ) Q s c a ( p , s ) ( ω ) .

Metrics