Abstract

The brightness of an isolated test patch is related to its luminance by a power law having an exponent of about 13, a result known as Stevens’s brightness law. The brightness law exponent characterizes the rate at which brightness grows with luminance and can thus be thought of as an “exponential” gain factor. We studied changes in this gain factor for incremental and decremental test squares as a function of the size of a surrounding frame of homogeneous luminance. For incremental targets, the gain decreased as an approximately linear function of the frame width. For decremental targets, the gain increased as an approximately linear function of the frame width. We modeled the brightness of the frame-embedded target with a quantitative theory based on the assumption that the target brightness is determined by the sum of achromatic color induction signals originating from the inner and outer edges of the surround, a theory that has previously been used to account for the results of several other brightness matching experiments. To account for the frame-width-dependent gain changes observed in the present study, we elaborate this edge integration theory by proposing the existence of a cortical contrast gain control mechanism by which the gains applied to neural edge detectors are influenced by the responses of other edge detectors responding to the nearby edges.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Shapley and C. Enroth-Cugell, "Visual adaptation and retinal gain controls," in Progress in Retinal Research 3, N.Osborne and G.Chader, eds. (Pergamon, 1984).
    [CrossRef]
  2. J. Walraven, C. Enroth-Cugell, D. C. Hood, D. I. A. MacLeod, and J. L. Schapf, "The control of visual sensitivity," in Visual Perception: The Neurophysiological Foundations, L.Spillmann and J.S.Werner, eds. (Academic, 1990).
  3. S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, "Adaptation of retinal processing to image contrast and spatial scale," Nature 386, 69-73 (1997).
    [CrossRef] [PubMed]
  4. M. Meister and M. J. Berry, "The neural code of the retina," Neuron 22, 435-450 (1999).
    [CrossRef] [PubMed]
  5. N. Brenner, W. Bialek, and R. de Ruyter van Steveninck, "Adaptive rescaling maximizes information transmission," Neuron 26, 695-702 (2000).
    [CrossRef] [PubMed]
  6. F. A. Dunn and F. Rieke, "The impact of photoreceptor noise on retina gain controls," Curr. Opin. Neurobiol. 16, 363-370 (2006).
    [CrossRef] [PubMed]
  7. M. E. Rudd, "Lightness computation by a neural filling-in mechanism," Proc. Soc. Photo-Opt. Instrum. Eng. 4299, 400-413 (2001).
  8. M. E. Rudd and K. F. Arrington, "Darkness filling-in: a neural model of darkness induction," Vision Res. 41, 3649-3662 (2001).
    [CrossRef] [PubMed]
  9. I. K. Zemach and M. E. Rudd, "Blocking of achromatic color induction signals by borders of different contrast polarities (abstract)," J. Vision 2, 106a, doi:10.1167/2.10.106 (2002).
    [CrossRef]
  10. I. K. Zemach and M. E. Rudd, "Spatial decay of achromatic color induction differs for lightness and darkness induction processes (abstract)," J. Vision 3, 421a, doi:10.1167/3.9.42 (2003).
    [CrossRef]
  11. M. E. Rudd, "Progress on a computational model of human achromatic color processing," Proc. Soc. Photo-Opt. Instrum. Eng. 5007, 170-181 (2003).
  12. M. E. Rudd and I. K. Zemach, "Quantitative properties of achromatic color induction: An edge integration analysis," Vision Res. 44, 971-981 (2004).
    [CrossRef] [PubMed]
  13. M. E. Rudd and I. K. Zemach, "The highest luminance anchoring rule in achromatic color perception: some counterexamples and an alternative theory," J. Vision 5, 983-1003, doi:10.1167/5.11.5 (2005).
    [CrossRef]
  14. M. E. Rudd and I. K. Zemach, "Contrast polarity and edge integration in achromatic color perception," J. Opt. Soc. Am. A 24, 2134-2156 (2007).
    [CrossRef]
  15. M. E. Rudd and D. Popa, "A theory of the neural processes underlying edge integration in human lightness perception (abstract)," J. Vision 4, 345a, doi:10.1167/4.8.345 (2004).
    [CrossRef]
  16. M. E. Rudd and D. Popa, "Edge integration and edge interaction in achromatic color computation (abstract)," J. Vision 4, 79a, doi:10.1167/4.11.79 (2004).
    [CrossRef]
  17. J. W. Onley, "Light adaptation and the brightness of brief foveal stimuli," J. Opt. Soc. Am. 51, 667-673 (1961).
    [CrossRef] [PubMed]
  18. J. C. Stevens, "Brightness inhibition re size of surround," Percept. Psychophys. 2, 189-192 (1967).
    [CrossRef]
  19. M. E. Rudd, is preparing a manuscript to be called "Edge integration and anchoring in the perception of lightness, brightness, and brightness contrast."
  20. L. E. Arend and B. Spehar, "Lightness, brightness and brightness contrast: I. Illumination variation," Percept. Psychophys. 54, 446-456 (1993).
    [CrossRef] [PubMed]
  21. L. E. Arend and B. Spehar, "Lightness, brightness and brightness contrast: II. Reflectance variation," Percept. Psychophys. 54, 457-468 (1993).
    [CrossRef] [PubMed]
  22. E. H. Land and J. J. McCann, "The Retinex theory of vision," J. Opt. Soc. Am. 61, 1-11 (1971).
    [CrossRef] [PubMed]
  23. E. H. Land, "The Retinex theory of color vision," Sci. Am. 237, 108-128 (1977).
    [CrossRef] [PubMed]
  24. E. H. Land, "Recent advances in Retinex theory and some implications for cortical computations: color vision and the natural image," Proc. Natl. Acad. Sci. U.S.A. 80, 5163-5169 (1983).
    [CrossRef] [PubMed]
  25. E. H. Land, "Recent advances in Retinex theory," Vision Res. 26, 7-21 (1986).
    [CrossRef] [PubMed]
  26. E. H. Land, "An alternative technique for the computation of the designator in the Retinex theory of color vision," Proc. Natl. Acad. Sci. U.S.A. 83, 3078-3080 (1986).
    [CrossRef] [PubMed]
  27. S. S. Stevens, "On the brightness of lights and loudness of sounds (abstract)," Science 118, 576 (1953).
  28. S. S. Stevens, "To honor Fechner and repeal his law," Science 133, 80-86 (1961).
    [CrossRef] [PubMed]
  29. D. Raab, "Magnitude estimation of the brightness of brief foveal stimuli," Science 135, 42-43 (1962).
    [CrossRef] [PubMed]
  30. S. S. Stevens, "Intensity functions in sensory systems," Int. J. Neurol. 6, 202-209 (1967).
    [PubMed]
  31. S. S. Stevens, "Sensory power functions and neural events," in Handbook of Sensory Physiology, D.Jameson and L.Hurvich, eds. (Springer, 1972), Vol. VII/7, pp. 226-242.
  32. L. E. Marks, Sensory Processes: The New Psychophysics (Academic, 1974).
  33. S. S. Stevens, Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects (Wiley, 1975).
  34. L. E. Marks, "Scales of sensation: prolegomena to any future psychophysics that will be able to come forth as science," Percept. Psychophys. 16, 358-376 (1977).
    [CrossRef]
  35. J. C. Stevens and L. E. Marks, "Stevens power law in vision: exponents, intercepts, and thresholds," in Fechner Day 99: Proceeding of the Fifteenth Annual Meeting of the International Society for Psychophysics, P.Killeen and W.Uttal, eds. (ISP, 1999), pp. 82-87.
  36. P. Whittle, "Contrast brightness and ordinary seeing," in Lightness, Brightness, and Transparency, A.L.Gilchrist, ed. (Erlbaum, 1994), pp. 111-157.
  37. D. H. Brainard, "The psychophysics toolbox," Spatial Vis. 10, 233-236 (1997).
    [CrossRef]
  38. D. G. Pelli, "The VideoToolbox software for visual psychophysics: transforming numbers into movies," Spatial Vis. 10, 437-442.
  39. L. E. Arend, J. N. Buehler, and G. R. Lockhead, "Difference information in brightness perception," Percept. Psychophys. 9, 367-370 (1971).
    [CrossRef]
  40. R. Shapley and R. C. Reid, "Contrast and assimilation in the perception of brightness," Proc. Natl. Acad. Sci. U.S.A. 82, 5983-5986 (1985).
    [CrossRef] [PubMed]
  41. R. C. Reid and R. Shapley, "Brightness induction by local contrast and the spatial dependence of assimilation," Vision Res. 28, 115-132 (1988).
    [CrossRef] [PubMed]
  42. A. L. Gilchrist, "Lightness contrast and failures of contrast: a common explanation," Percept. Psychophys. 43, 415-424 (1988).
    [CrossRef] [PubMed]
  43. S. K. Shevell, I. Holliday, and P. Whittle, "Two separate neural mechanisms of brightness induction," Vision Res. 32, 2331-2340 (1992).
    [CrossRef] [PubMed]
  44. S. W. Hong and S. K. Shevell, "Brightness induction: unequal spatial integration with increments and decrements," Visual Neurosci. 21, 353-357 (2004).
    [CrossRef]
  45. T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, "Edge integration and the perception of brightness and darkness," J. Vision 6, 1126-1145, doi:10.1167/6/10.12 (2006).
    [CrossRef]
  46. F. W. Cornelissen, A. R. Wade, T. Vladusich, R. F. Dougherty, and B. A. Wandell, "No functional magnetic resonance imaging evidence for brightness and color filling-in in early human visual cortex," J. Neurosci. 26, 3634-3641 (2006).
    [CrossRef] [PubMed]
  47. A. F. Rossi, C. D. Rittenhouse, and M. A. Paradiso, "The representation of brightness in primary visual cortex," Science 273, 1104-1107 (1996).
    [CrossRef] [PubMed]
  48. S. P. MacEvoy, W. Kim, and M. A. Paradiso, "Integration of surface information in primary visual cortex," Nat. Neurosci. 1, 616-620 (1998).
    [CrossRef]
  49. A. F. Rossi and M. A. Paradiso, "Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex," J. Neurosci. 19, 6145-6156 (1999).
    [PubMed]
  50. M. Kinoshita and H. Komatsu, "Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex," J. Neurophysiol. 86, 2559-2570 (2001).
    [PubMed]
  51. T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, "Do cortical neurons process luminance or contrast to encode surface properties?" J. Neurophysiol. 95, 2638-2649 (2005).
    [CrossRef] [PubMed]
  52. S. Zeki and L. Marini, "Three cortical stages of colour processing in the human brain," Brain 121, 1669-1686 (1998).
    [CrossRef] [PubMed]
  53. V. Walsh, "How does the cortex construct color?" Proc. Natl. Acad. Sci. U.S.A. 96, 13594-13596 (1999).
    [CrossRef] [PubMed]
  54. A. Bartels and S. Zeki, "The architecture of the colour centre in the human visual brain: new results and a review," Eur. J. Neurosci. 12, 172-190 (2000).
    [CrossRef] [PubMed]
  55. R. W. Kentridge, C. A. Heywood, and A. Cowey, "Chromatic edges, surfaces and constancies in cerebral achromatopsia." Neuropsychologia 42, 821-830 (2004).
    [CrossRef] [PubMed]
  56. H. E. Smithson, "Sensory, computational, and cognitive components of human colour constancy," Philos. Trans. R. Soc. London, Ser. B 360, 1329-1346, doi:10.1098/rstb.2005.1633 (2005).
    [CrossRef] [PubMed]
  57. C. Kennard, M. Lawden, A. B. Morland, and K. H. Ruddock, "Color discrimination and color constancy are impaired in a patient with incomplete achromatopsia associated with prestriate cortical-lesions," Proc. R. Soc. London, Ser. B 206, 169-175 (1995).
    [CrossRef]
  58. S. Clarke, V. Walsh, A. Schoppig, G. Assal, and A. Cowey, "Colour constancy impairments in patients with lesions of the prestriate cortex," Exp. Brain Res. 123, 154-158 (1998).
    [CrossRef] [PubMed]
  59. S. Zeki, A Vision of the Brain (Blackwell, 1993).
  60. S. Zeki, S. Aglioti, D. McKeefry, and G. Berlucchi, "The neurological basis of conscious color perception in a blind patient," Proc. Natl. Acad. Sci. U.S.A. 96, 14124-14129 (1999).
    [CrossRef] [PubMed]
  61. C. D. Gilbert and T. N. Wiesel, "Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex," J. Neurosci. 9, 2432-2442 (1989).
    [PubMed]
  62. J. A. Hirsch and C. D. Gilbert, "Synaptic physiology of horizontal connections in the cat's visual cortex," J. Neurosci. 11, 1800-1809 (1991).
    [PubMed]
  63. A. Grinvald, L. L. Lieke, R. D. Frostig, and R. Hildesheim, "Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex," J. Neurosci. 14, 2545-2568 (1994).
    [PubMed]
  64. M. K. Kapadia, G. Westheimer, and C. D. Gilbert, "Spatial distribution of contextual interactions in primary visual cortex and in visual perception," J. Neurosci. 84, 2048-2062 (2000).
  65. K. Mizobe, U. Polat, M. W. Pettet, and T. Kasamatsu, "Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field," Visual Neurosci. 18, 377-391 (2001).
    [CrossRef]
  66. D. D. Stettler, A. Das, J. Bennett, and C. D. Gilbert, "Lateral connectivity and contextual interactions in macaque primary visual cortex," Neuron 36, 739-750 (2002).
    [CrossRef] [PubMed]
  67. H. Wallach, "Brightness constancy and the nature of achromatic colors," J. Exp. Psychol. 38, 310-324 (1948).
    [CrossRef] [PubMed]
  68. H. Wallach, "The perception of neutral colors," Sci. Am. 208, 107-116 (1963).
    [CrossRef] [PubMed]
  69. H. Wallach, On Perception (Quadrangle, 1976).
  70. E. G. Heinemann, "Simultaneous brightness induction as a function of inducing- and test-field luminances," J. Exp. Psychol. 50, 89-96 (1955).
    [CrossRef] [PubMed]
  71. E. G. Heinemann, "Simultaneous brightness induction," in Handbook of Sensory Physiology, D.Jameson andL.Hurvich, eds. (Springer, 1972), Vol. VII/4, pp.146-169.
  72. A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, "An anchoring theory of lightness perception," Psychol. Rev. 106, 795-834 (1999).
    [CrossRef] [PubMed]
  73. P. Bressan and R. Actis-Grosso, "Simultaneous lightness contrast with double increments," Perception 30, 889-897 (2001).
    [CrossRef] [PubMed]
  74. P. Bressan, "The place of white in a world of grays: a double-anchoring theory of lightness perception," Psychol. Rev. 113, 526-553 (2006).
    [CrossRef] [PubMed]
  75. C. Hess and H. Pretori, "Quantitative investigation of the lawfulness of simultaneous brightness contrast," H. Flock and J. H. Tenny, Percept. Mot. Skills 31, 947-969 (1884/1970).
    [CrossRef]
  76. A. Kozaki, "A further study in the relationship between brightness constancy and contrast," Jpn. Psychol. Res. 5, 129-136 (1963).
  77. A. Kozaki, "The effect of co-existent stimuli other than the test stimulus on brightness constancy," Jpn. Psychol. Res. 7, 138-147 (1965).
  78. P. Whittle and P. D. C. Challands, "The effect of background luminance on the brightness of flashes," Vision Res. 9, 1095-1110 (1969).
    [CrossRef] [PubMed]
  79. A. Jacobsen and A. Gilchrist, "Hess and Pretori revisited: resolution of some old contradictions," Percept. Psychophys. 43, 7-14 (1988).
    [CrossRef] [PubMed]
  80. T. Agostini and N. Bruno, "Lightness contrast in CRT and paper-and-illuminant displays," Percept. Psychophys. 58, 250-258 (1996).
    [CrossRef] [PubMed]
  81. F. Metelli, "The perception of transparency," Sci. Am. 230, 90-98 (1974).
    [CrossRef] [PubMed]
  82. D. Todorovic, "Lightness and junctions," Perception 26, 379-394 (1997).
    [CrossRef] [PubMed]
  83. B. L. Anderson, "A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions," Perception 26, 419-453 (1997).
    [CrossRef] [PubMed]
  84. B. L. Anderson and J. Winawer, "Image segmentation and lightness perception," Nature 434, 79-83 (2005).
    [CrossRef] [PubMed]
  85. V. Ekroll, F. Faul, and R. Niederee, "The peculiar nature of simultaneous colour contrast in uniform surrounds," Vision Res. 44, 1765-1786 (2004).
    [CrossRef] [PubMed]

2007 (1)

2006 (4)

T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, "Edge integration and the perception of brightness and darkness," J. Vision 6, 1126-1145, doi:10.1167/6/10.12 (2006).
[CrossRef]

F. W. Cornelissen, A. R. Wade, T. Vladusich, R. F. Dougherty, and B. A. Wandell, "No functional magnetic resonance imaging evidence for brightness and color filling-in in early human visual cortex," J. Neurosci. 26, 3634-3641 (2006).
[CrossRef] [PubMed]

P. Bressan, "The place of white in a world of grays: a double-anchoring theory of lightness perception," Psychol. Rev. 113, 526-553 (2006).
[CrossRef] [PubMed]

F. A. Dunn and F. Rieke, "The impact of photoreceptor noise on retina gain controls," Curr. Opin. Neurobiol. 16, 363-370 (2006).
[CrossRef] [PubMed]

2005 (4)

B. L. Anderson and J. Winawer, "Image segmentation and lightness perception," Nature 434, 79-83 (2005).
[CrossRef] [PubMed]

M. E. Rudd and I. K. Zemach, "The highest luminance anchoring rule in achromatic color perception: some counterexamples and an alternative theory," J. Vision 5, 983-1003, doi:10.1167/5.11.5 (2005).
[CrossRef]

T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, "Do cortical neurons process luminance or contrast to encode surface properties?" J. Neurophysiol. 95, 2638-2649 (2005).
[CrossRef] [PubMed]

H. E. Smithson, "Sensory, computational, and cognitive components of human colour constancy," Philos. Trans. R. Soc. London, Ser. B 360, 1329-1346, doi:10.1098/rstb.2005.1633 (2005).
[CrossRef] [PubMed]

2004 (6)

R. W. Kentridge, C. A. Heywood, and A. Cowey, "Chromatic edges, surfaces and constancies in cerebral achromatopsia." Neuropsychologia 42, 821-830 (2004).
[CrossRef] [PubMed]

S. W. Hong and S. K. Shevell, "Brightness induction: unequal spatial integration with increments and decrements," Visual Neurosci. 21, 353-357 (2004).
[CrossRef]

M. E. Rudd and D. Popa, "A theory of the neural processes underlying edge integration in human lightness perception (abstract)," J. Vision 4, 345a, doi:10.1167/4.8.345 (2004).
[CrossRef]

M. E. Rudd and D. Popa, "Edge integration and edge interaction in achromatic color computation (abstract)," J. Vision 4, 79a, doi:10.1167/4.11.79 (2004).
[CrossRef]

V. Ekroll, F. Faul, and R. Niederee, "The peculiar nature of simultaneous colour contrast in uniform surrounds," Vision Res. 44, 1765-1786 (2004).
[CrossRef] [PubMed]

M. E. Rudd and I. K. Zemach, "Quantitative properties of achromatic color induction: An edge integration analysis," Vision Res. 44, 971-981 (2004).
[CrossRef] [PubMed]

2003 (2)

I. K. Zemach and M. E. Rudd, "Spatial decay of achromatic color induction differs for lightness and darkness induction processes (abstract)," J. Vision 3, 421a, doi:10.1167/3.9.42 (2003).
[CrossRef]

M. E. Rudd, "Progress on a computational model of human achromatic color processing," Proc. Soc. Photo-Opt. Instrum. Eng. 5007, 170-181 (2003).

2002 (2)

I. K. Zemach and M. E. Rudd, "Blocking of achromatic color induction signals by borders of different contrast polarities (abstract)," J. Vision 2, 106a, doi:10.1167/2.10.106 (2002).
[CrossRef]

D. D. Stettler, A. Das, J. Bennett, and C. D. Gilbert, "Lateral connectivity and contextual interactions in macaque primary visual cortex," Neuron 36, 739-750 (2002).
[CrossRef] [PubMed]

2001 (5)

K. Mizobe, U. Polat, M. W. Pettet, and T. Kasamatsu, "Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field," Visual Neurosci. 18, 377-391 (2001).
[CrossRef]

P. Bressan and R. Actis-Grosso, "Simultaneous lightness contrast with double increments," Perception 30, 889-897 (2001).
[CrossRef] [PubMed]

M. E. Rudd, "Lightness computation by a neural filling-in mechanism," Proc. Soc. Photo-Opt. Instrum. Eng. 4299, 400-413 (2001).

M. E. Rudd and K. F. Arrington, "Darkness filling-in: a neural model of darkness induction," Vision Res. 41, 3649-3662 (2001).
[CrossRef] [PubMed]

M. Kinoshita and H. Komatsu, "Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex," J. Neurophysiol. 86, 2559-2570 (2001).
[PubMed]

2000 (3)

A. Bartels and S. Zeki, "The architecture of the colour centre in the human visual brain: new results and a review," Eur. J. Neurosci. 12, 172-190 (2000).
[CrossRef] [PubMed]

N. Brenner, W. Bialek, and R. de Ruyter van Steveninck, "Adaptive rescaling maximizes information transmission," Neuron 26, 695-702 (2000).
[CrossRef] [PubMed]

M. K. Kapadia, G. Westheimer, and C. D. Gilbert, "Spatial distribution of contextual interactions in primary visual cortex and in visual perception," J. Neurosci. 84, 2048-2062 (2000).

1999 (5)

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, "An anchoring theory of lightness perception," Psychol. Rev. 106, 795-834 (1999).
[CrossRef] [PubMed]

M. Meister and M. J. Berry, "The neural code of the retina," Neuron 22, 435-450 (1999).
[CrossRef] [PubMed]

V. Walsh, "How does the cortex construct color?" Proc. Natl. Acad. Sci. U.S.A. 96, 13594-13596 (1999).
[CrossRef] [PubMed]

A. F. Rossi and M. A. Paradiso, "Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex," J. Neurosci. 19, 6145-6156 (1999).
[PubMed]

S. Zeki, S. Aglioti, D. McKeefry, and G. Berlucchi, "The neurological basis of conscious color perception in a blind patient," Proc. Natl. Acad. Sci. U.S.A. 96, 14124-14129 (1999).
[CrossRef] [PubMed]

1998 (3)

S. Clarke, V. Walsh, A. Schoppig, G. Assal, and A. Cowey, "Colour constancy impairments in patients with lesions of the prestriate cortex," Exp. Brain Res. 123, 154-158 (1998).
[CrossRef] [PubMed]

S. P. MacEvoy, W. Kim, and M. A. Paradiso, "Integration of surface information in primary visual cortex," Nat. Neurosci. 1, 616-620 (1998).
[CrossRef]

S. Zeki and L. Marini, "Three cortical stages of colour processing in the human brain," Brain 121, 1669-1686 (1998).
[CrossRef] [PubMed]

1997 (4)

D. H. Brainard, "The psychophysics toolbox," Spatial Vis. 10, 233-236 (1997).
[CrossRef]

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, "Adaptation of retinal processing to image contrast and spatial scale," Nature 386, 69-73 (1997).
[CrossRef] [PubMed]

D. Todorovic, "Lightness and junctions," Perception 26, 379-394 (1997).
[CrossRef] [PubMed]

B. L. Anderson, "A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions," Perception 26, 419-453 (1997).
[CrossRef] [PubMed]

1996 (2)

T. Agostini and N. Bruno, "Lightness contrast in CRT and paper-and-illuminant displays," Percept. Psychophys. 58, 250-258 (1996).
[CrossRef] [PubMed]

A. F. Rossi, C. D. Rittenhouse, and M. A. Paradiso, "The representation of brightness in primary visual cortex," Science 273, 1104-1107 (1996).
[CrossRef] [PubMed]

1995 (1)

C. Kennard, M. Lawden, A. B. Morland, and K. H. Ruddock, "Color discrimination and color constancy are impaired in a patient with incomplete achromatopsia associated with prestriate cortical-lesions," Proc. R. Soc. London, Ser. B 206, 169-175 (1995).
[CrossRef]

1994 (1)

A. Grinvald, L. L. Lieke, R. D. Frostig, and R. Hildesheim, "Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex," J. Neurosci. 14, 2545-2568 (1994).
[PubMed]

1993 (2)

L. E. Arend and B. Spehar, "Lightness, brightness and brightness contrast: I. Illumination variation," Percept. Psychophys. 54, 446-456 (1993).
[CrossRef] [PubMed]

L. E. Arend and B. Spehar, "Lightness, brightness and brightness contrast: II. Reflectance variation," Percept. Psychophys. 54, 457-468 (1993).
[CrossRef] [PubMed]

1992 (1)

S. K. Shevell, I. Holliday, and P. Whittle, "Two separate neural mechanisms of brightness induction," Vision Res. 32, 2331-2340 (1992).
[CrossRef] [PubMed]

1991 (1)

J. A. Hirsch and C. D. Gilbert, "Synaptic physiology of horizontal connections in the cat's visual cortex," J. Neurosci. 11, 1800-1809 (1991).
[PubMed]

1989 (1)

C. D. Gilbert and T. N. Wiesel, "Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex," J. Neurosci. 9, 2432-2442 (1989).
[PubMed]

1988 (3)

R. C. Reid and R. Shapley, "Brightness induction by local contrast and the spatial dependence of assimilation," Vision Res. 28, 115-132 (1988).
[CrossRef] [PubMed]

A. L. Gilchrist, "Lightness contrast and failures of contrast: a common explanation," Percept. Psychophys. 43, 415-424 (1988).
[CrossRef] [PubMed]

A. Jacobsen and A. Gilchrist, "Hess and Pretori revisited: resolution of some old contradictions," Percept. Psychophys. 43, 7-14 (1988).
[CrossRef] [PubMed]

1986 (2)

E. H. Land, "Recent advances in Retinex theory," Vision Res. 26, 7-21 (1986).
[CrossRef] [PubMed]

E. H. Land, "An alternative technique for the computation of the designator in the Retinex theory of color vision," Proc. Natl. Acad. Sci. U.S.A. 83, 3078-3080 (1986).
[CrossRef] [PubMed]

1985 (1)

R. Shapley and R. C. Reid, "Contrast and assimilation in the perception of brightness," Proc. Natl. Acad. Sci. U.S.A. 82, 5983-5986 (1985).
[CrossRef] [PubMed]

1983 (1)

E. H. Land, "Recent advances in Retinex theory and some implications for cortical computations: color vision and the natural image," Proc. Natl. Acad. Sci. U.S.A. 80, 5163-5169 (1983).
[CrossRef] [PubMed]

1977 (2)

E. H. Land, "The Retinex theory of color vision," Sci. Am. 237, 108-128 (1977).
[CrossRef] [PubMed]

L. E. Marks, "Scales of sensation: prolegomena to any future psychophysics that will be able to come forth as science," Percept. Psychophys. 16, 358-376 (1977).
[CrossRef]

1974 (1)

F. Metelli, "The perception of transparency," Sci. Am. 230, 90-98 (1974).
[CrossRef] [PubMed]

1971 (2)

E. H. Land and J. J. McCann, "The Retinex theory of vision," J. Opt. Soc. Am. 61, 1-11 (1971).
[CrossRef] [PubMed]

L. E. Arend, J. N. Buehler, and G. R. Lockhead, "Difference information in brightness perception," Percept. Psychophys. 9, 367-370 (1971).
[CrossRef]

1969 (1)

P. Whittle and P. D. C. Challands, "The effect of background luminance on the brightness of flashes," Vision Res. 9, 1095-1110 (1969).
[CrossRef] [PubMed]

1967 (2)

J. C. Stevens, "Brightness inhibition re size of surround," Percept. Psychophys. 2, 189-192 (1967).
[CrossRef]

S. S. Stevens, "Intensity functions in sensory systems," Int. J. Neurol. 6, 202-209 (1967).
[PubMed]

1965 (1)

A. Kozaki, "The effect of co-existent stimuli other than the test stimulus on brightness constancy," Jpn. Psychol. Res. 7, 138-147 (1965).

1963 (2)

A. Kozaki, "A further study in the relationship between brightness constancy and contrast," Jpn. Psychol. Res. 5, 129-136 (1963).

H. Wallach, "The perception of neutral colors," Sci. Am. 208, 107-116 (1963).
[CrossRef] [PubMed]

1962 (1)

D. Raab, "Magnitude estimation of the brightness of brief foveal stimuli," Science 135, 42-43 (1962).
[CrossRef] [PubMed]

1961 (2)

1955 (1)

E. G. Heinemann, "Simultaneous brightness induction as a function of inducing- and test-field luminances," J. Exp. Psychol. 50, 89-96 (1955).
[CrossRef] [PubMed]

1953 (1)

S. S. Stevens, "On the brightness of lights and loudness of sounds (abstract)," Science 118, 576 (1953).

1948 (1)

H. Wallach, "Brightness constancy and the nature of achromatic colors," J. Exp. Psychol. 38, 310-324 (1948).
[CrossRef] [PubMed]

Actis-Grosso, R.

P. Bressan and R. Actis-Grosso, "Simultaneous lightness contrast with double increments," Perception 30, 889-897 (2001).
[CrossRef] [PubMed]

Aglioti, S.

S. Zeki, S. Aglioti, D. McKeefry, and G. Berlucchi, "The neurological basis of conscious color perception in a blind patient," Proc. Natl. Acad. Sci. U.S.A. 96, 14124-14129 (1999).
[CrossRef] [PubMed]

Agostini, T.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, "An anchoring theory of lightness perception," Psychol. Rev. 106, 795-834 (1999).
[CrossRef] [PubMed]

T. Agostini and N. Bruno, "Lightness contrast in CRT and paper-and-illuminant displays," Percept. Psychophys. 58, 250-258 (1996).
[CrossRef] [PubMed]

Anderson, B. L.

B. L. Anderson and J. Winawer, "Image segmentation and lightness perception," Nature 434, 79-83 (2005).
[CrossRef] [PubMed]

B. L. Anderson, "A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions," Perception 26, 419-453 (1997).
[CrossRef] [PubMed]

Annan, V.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, "An anchoring theory of lightness perception," Psychol. Rev. 106, 795-834 (1999).
[CrossRef] [PubMed]

Arend, L. E.

L. E. Arend and B. Spehar, "Lightness, brightness and brightness contrast: I. Illumination variation," Percept. Psychophys. 54, 446-456 (1993).
[CrossRef] [PubMed]

L. E. Arend and B. Spehar, "Lightness, brightness and brightness contrast: II. Reflectance variation," Percept. Psychophys. 54, 457-468 (1993).
[CrossRef] [PubMed]

L. E. Arend, J. N. Buehler, and G. R. Lockhead, "Difference information in brightness perception," Percept. Psychophys. 9, 367-370 (1971).
[CrossRef]

Arrington, K. F.

M. E. Rudd and K. F. Arrington, "Darkness filling-in: a neural model of darkness induction," Vision Res. 41, 3649-3662 (2001).
[CrossRef] [PubMed]

Assal, G.

S. Clarke, V. Walsh, A. Schoppig, G. Assal, and A. Cowey, "Colour constancy impairments in patients with lesions of the prestriate cortex," Exp. Brain Res. 123, 154-158 (1998).
[CrossRef] [PubMed]

Bartels, A.

A. Bartels and S. Zeki, "The architecture of the colour centre in the human visual brain: new results and a review," Eur. J. Neurosci. 12, 172-190 (2000).
[CrossRef] [PubMed]

Bennett, J.

D. D. Stettler, A. Das, J. Bennett, and C. D. Gilbert, "Lateral connectivity and contextual interactions in macaque primary visual cortex," Neuron 36, 739-750 (2002).
[CrossRef] [PubMed]

Berlucchi, G.

S. Zeki, S. Aglioti, D. McKeefry, and G. Berlucchi, "The neurological basis of conscious color perception in a blind patient," Proc. Natl. Acad. Sci. U.S.A. 96, 14124-14129 (1999).
[CrossRef] [PubMed]

Berry, M. J.

M. Meister and M. J. Berry, "The neural code of the retina," Neuron 22, 435-450 (1999).
[CrossRef] [PubMed]

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, "Adaptation of retinal processing to image contrast and spatial scale," Nature 386, 69-73 (1997).
[CrossRef] [PubMed]

Bialek, W.

N. Brenner, W. Bialek, and R. de Ruyter van Steveninck, "Adaptive rescaling maximizes information transmission," Neuron 26, 695-702 (2000).
[CrossRef] [PubMed]

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, "Adaptation of retinal processing to image contrast and spatial scale," Nature 386, 69-73 (1997).
[CrossRef] [PubMed]

Bonato, F.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, "An anchoring theory of lightness perception," Psychol. Rev. 106, 795-834 (1999).
[CrossRef] [PubMed]

Brainard, D. H.

D. H. Brainard, "The psychophysics toolbox," Spatial Vis. 10, 233-236 (1997).
[CrossRef]

Brenner, N.

N. Brenner, W. Bialek, and R. de Ruyter van Steveninck, "Adaptive rescaling maximizes information transmission," Neuron 26, 695-702 (2000).
[CrossRef] [PubMed]

Bressan, P.

P. Bressan, "The place of white in a world of grays: a double-anchoring theory of lightness perception," Psychol. Rev. 113, 526-553 (2006).
[CrossRef] [PubMed]

P. Bressan and R. Actis-Grosso, "Simultaneous lightness contrast with double increments," Perception 30, 889-897 (2001).
[CrossRef] [PubMed]

Bruno, N.

T. Agostini and N. Bruno, "Lightness contrast in CRT and paper-and-illuminant displays," Percept. Psychophys. 58, 250-258 (1996).
[CrossRef] [PubMed]

Buehler, J. N.

L. E. Arend, J. N. Buehler, and G. R. Lockhead, "Difference information in brightness perception," Percept. Psychophys. 9, 367-370 (1971).
[CrossRef]

Cataliotti, J.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, "An anchoring theory of lightness perception," Psychol. Rev. 106, 795-834 (1999).
[CrossRef] [PubMed]

Challands, P. D. C.

P. Whittle and P. D. C. Challands, "The effect of background luminance on the brightness of flashes," Vision Res. 9, 1095-1110 (1969).
[CrossRef] [PubMed]

Clarke, S.

S. Clarke, V. Walsh, A. Schoppig, G. Assal, and A. Cowey, "Colour constancy impairments in patients with lesions of the prestriate cortex," Exp. Brain Res. 123, 154-158 (1998).
[CrossRef] [PubMed]

Cornelissen, F. W.

T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, "Edge integration and the perception of brightness and darkness," J. Vision 6, 1126-1145, doi:10.1167/6/10.12 (2006).
[CrossRef]

F. W. Cornelissen, A. R. Wade, T. Vladusich, R. F. Dougherty, and B. A. Wandell, "No functional magnetic resonance imaging evidence for brightness and color filling-in in early human visual cortex," J. Neurosci. 26, 3634-3641 (2006).
[CrossRef] [PubMed]

T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, "Do cortical neurons process luminance or contrast to encode surface properties?" J. Neurophysiol. 95, 2638-2649 (2005).
[CrossRef] [PubMed]

Cowey, A.

R. W. Kentridge, C. A. Heywood, and A. Cowey, "Chromatic edges, surfaces and constancies in cerebral achromatopsia." Neuropsychologia 42, 821-830 (2004).
[CrossRef] [PubMed]

S. Clarke, V. Walsh, A. Schoppig, G. Assal, and A. Cowey, "Colour constancy impairments in patients with lesions of the prestriate cortex," Exp. Brain Res. 123, 154-158 (1998).
[CrossRef] [PubMed]

Das, A.

D. D. Stettler, A. Das, J. Bennett, and C. D. Gilbert, "Lateral connectivity and contextual interactions in macaque primary visual cortex," Neuron 36, 739-750 (2002).
[CrossRef] [PubMed]

de Ruyter van Steveninck, R.

N. Brenner, W. Bialek, and R. de Ruyter van Steveninck, "Adaptive rescaling maximizes information transmission," Neuron 26, 695-702 (2000).
[CrossRef] [PubMed]

Dougherty, R. F.

F. W. Cornelissen, A. R. Wade, T. Vladusich, R. F. Dougherty, and B. A. Wandell, "No functional magnetic resonance imaging evidence for brightness and color filling-in in early human visual cortex," J. Neurosci. 26, 3634-3641 (2006).
[CrossRef] [PubMed]

Dunn, F. A.

F. A. Dunn and F. Rieke, "The impact of photoreceptor noise on retina gain controls," Curr. Opin. Neurobiol. 16, 363-370 (2006).
[CrossRef] [PubMed]

Economou, E.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, "An anchoring theory of lightness perception," Psychol. Rev. 106, 795-834 (1999).
[CrossRef] [PubMed]

Ekroll, V.

V. Ekroll, F. Faul, and R. Niederee, "The peculiar nature of simultaneous colour contrast in uniform surrounds," Vision Res. 44, 1765-1786 (2004).
[CrossRef] [PubMed]

Enroth-Cugell, C.

R. Shapley and C. Enroth-Cugell, "Visual adaptation and retinal gain controls," in Progress in Retinal Research 3, N.Osborne and G.Chader, eds. (Pergamon, 1984).
[CrossRef]

J. Walraven, C. Enroth-Cugell, D. C. Hood, D. I. A. MacLeod, and J. L. Schapf, "The control of visual sensitivity," in Visual Perception: The Neurophysiological Foundations, L.Spillmann and J.S.Werner, eds. (Academic, 1990).

Faul, F.

V. Ekroll, F. Faul, and R. Niederee, "The peculiar nature of simultaneous colour contrast in uniform surrounds," Vision Res. 44, 1765-1786 (2004).
[CrossRef] [PubMed]

Frostig, R. D.

A. Grinvald, L. L. Lieke, R. D. Frostig, and R. Hildesheim, "Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex," J. Neurosci. 14, 2545-2568 (1994).
[PubMed]

Gilbert, C. D.

D. D. Stettler, A. Das, J. Bennett, and C. D. Gilbert, "Lateral connectivity and contextual interactions in macaque primary visual cortex," Neuron 36, 739-750 (2002).
[CrossRef] [PubMed]

M. K. Kapadia, G. Westheimer, and C. D. Gilbert, "Spatial distribution of contextual interactions in primary visual cortex and in visual perception," J. Neurosci. 84, 2048-2062 (2000).

J. A. Hirsch and C. D. Gilbert, "Synaptic physiology of horizontal connections in the cat's visual cortex," J. Neurosci. 11, 1800-1809 (1991).
[PubMed]

C. D. Gilbert and T. N. Wiesel, "Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex," J. Neurosci. 9, 2432-2442 (1989).
[PubMed]

Gilchrist, A.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, "An anchoring theory of lightness perception," Psychol. Rev. 106, 795-834 (1999).
[CrossRef] [PubMed]

A. Jacobsen and A. Gilchrist, "Hess and Pretori revisited: resolution of some old contradictions," Percept. Psychophys. 43, 7-14 (1988).
[CrossRef] [PubMed]

Gilchrist, A. L.

A. L. Gilchrist, "Lightness contrast and failures of contrast: a common explanation," Percept. Psychophys. 43, 415-424 (1988).
[CrossRef] [PubMed]

Grinvald, A.

A. Grinvald, L. L. Lieke, R. D. Frostig, and R. Hildesheim, "Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex," J. Neurosci. 14, 2545-2568 (1994).
[PubMed]

Heinemann, E. G.

E. G. Heinemann, "Simultaneous brightness induction as a function of inducing- and test-field luminances," J. Exp. Psychol. 50, 89-96 (1955).
[CrossRef] [PubMed]

E. G. Heinemann, "Simultaneous brightness induction," in Handbook of Sensory Physiology, D.Jameson andL.Hurvich, eds. (Springer, 1972), Vol. VII/4, pp.146-169.

Hess, C.

C. Hess and H. Pretori, "Quantitative investigation of the lawfulness of simultaneous brightness contrast," H. Flock and J. H. Tenny, Percept. Mot. Skills 31, 947-969 (1884/1970).
[CrossRef]

Heywood, C. A.

R. W. Kentridge, C. A. Heywood, and A. Cowey, "Chromatic edges, surfaces and constancies in cerebral achromatopsia." Neuropsychologia 42, 821-830 (2004).
[CrossRef] [PubMed]

Hildesheim, R.

A. Grinvald, L. L. Lieke, R. D. Frostig, and R. Hildesheim, "Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex," J. Neurosci. 14, 2545-2568 (1994).
[PubMed]

Hirsch, J. A.

J. A. Hirsch and C. D. Gilbert, "Synaptic physiology of horizontal connections in the cat's visual cortex," J. Neurosci. 11, 1800-1809 (1991).
[PubMed]

Holliday, I.

S. K. Shevell, I. Holliday, and P. Whittle, "Two separate neural mechanisms of brightness induction," Vision Res. 32, 2331-2340 (1992).
[CrossRef] [PubMed]

Hong, S. W.

S. W. Hong and S. K. Shevell, "Brightness induction: unequal spatial integration with increments and decrements," Visual Neurosci. 21, 353-357 (2004).
[CrossRef]

Hood, D. C.

J. Walraven, C. Enroth-Cugell, D. C. Hood, D. I. A. MacLeod, and J. L. Schapf, "The control of visual sensitivity," in Visual Perception: The Neurophysiological Foundations, L.Spillmann and J.S.Werner, eds. (Academic, 1990).

Jacobsen, A.

A. Jacobsen and A. Gilchrist, "Hess and Pretori revisited: resolution of some old contradictions," Percept. Psychophys. 43, 7-14 (1988).
[CrossRef] [PubMed]

Kapadia, M. K.

M. K. Kapadia, G. Westheimer, and C. D. Gilbert, "Spatial distribution of contextual interactions in primary visual cortex and in visual perception," J. Neurosci. 84, 2048-2062 (2000).

Kasamatsu, T.

K. Mizobe, U. Polat, M. W. Pettet, and T. Kasamatsu, "Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field," Visual Neurosci. 18, 377-391 (2001).
[CrossRef]

Kennard, C.

C. Kennard, M. Lawden, A. B. Morland, and K. H. Ruddock, "Color discrimination and color constancy are impaired in a patient with incomplete achromatopsia associated with prestriate cortical-lesions," Proc. R. Soc. London, Ser. B 206, 169-175 (1995).
[CrossRef]

Kentridge, R. W.

R. W. Kentridge, C. A. Heywood, and A. Cowey, "Chromatic edges, surfaces and constancies in cerebral achromatopsia." Neuropsychologia 42, 821-830 (2004).
[CrossRef] [PubMed]

Kim, W.

S. P. MacEvoy, W. Kim, and M. A. Paradiso, "Integration of surface information in primary visual cortex," Nat. Neurosci. 1, 616-620 (1998).
[CrossRef]

Kinoshita, M.

M. Kinoshita and H. Komatsu, "Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex," J. Neurophysiol. 86, 2559-2570 (2001).
[PubMed]

Komatsu, H.

M. Kinoshita and H. Komatsu, "Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex," J. Neurophysiol. 86, 2559-2570 (2001).
[PubMed]

Kossyfidis, C.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, "An anchoring theory of lightness perception," Psychol. Rev. 106, 795-834 (1999).
[CrossRef] [PubMed]

Kozaki, A.

A. Kozaki, "The effect of co-existent stimuli other than the test stimulus on brightness constancy," Jpn. Psychol. Res. 7, 138-147 (1965).

A. Kozaki, "A further study in the relationship between brightness constancy and contrast," Jpn. Psychol. Res. 5, 129-136 (1963).

Land, E. H.

E. H. Land, "Recent advances in Retinex theory," Vision Res. 26, 7-21 (1986).
[CrossRef] [PubMed]

E. H. Land, "An alternative technique for the computation of the designator in the Retinex theory of color vision," Proc. Natl. Acad. Sci. U.S.A. 83, 3078-3080 (1986).
[CrossRef] [PubMed]

E. H. Land, "Recent advances in Retinex theory and some implications for cortical computations: color vision and the natural image," Proc. Natl. Acad. Sci. U.S.A. 80, 5163-5169 (1983).
[CrossRef] [PubMed]

E. H. Land, "The Retinex theory of color vision," Sci. Am. 237, 108-128 (1977).
[CrossRef] [PubMed]

E. H. Land and J. J. McCann, "The Retinex theory of vision," J. Opt. Soc. Am. 61, 1-11 (1971).
[CrossRef] [PubMed]

Lawden, M.

C. Kennard, M. Lawden, A. B. Morland, and K. H. Ruddock, "Color discrimination and color constancy are impaired in a patient with incomplete achromatopsia associated with prestriate cortical-lesions," Proc. R. Soc. London, Ser. B 206, 169-175 (1995).
[CrossRef]

Li, X.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, "An anchoring theory of lightness perception," Psychol. Rev. 106, 795-834 (1999).
[CrossRef] [PubMed]

Lieke, L. L.

A. Grinvald, L. L. Lieke, R. D. Frostig, and R. Hildesheim, "Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex," J. Neurosci. 14, 2545-2568 (1994).
[PubMed]

Lockhead, G. R.

L. E. Arend, J. N. Buehler, and G. R. Lockhead, "Difference information in brightness perception," Percept. Psychophys. 9, 367-370 (1971).
[CrossRef]

Lucassen, M. P.

T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, "Edge integration and the perception of brightness and darkness," J. Vision 6, 1126-1145, doi:10.1167/6/10.12 (2006).
[CrossRef]

T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, "Do cortical neurons process luminance or contrast to encode surface properties?" J. Neurophysiol. 95, 2638-2649 (2005).
[CrossRef] [PubMed]

MacEvoy, S. P.

S. P. MacEvoy, W. Kim, and M. A. Paradiso, "Integration of surface information in primary visual cortex," Nat. Neurosci. 1, 616-620 (1998).
[CrossRef]

MacLeod, D. I. A.

J. Walraven, C. Enroth-Cugell, D. C. Hood, D. I. A. MacLeod, and J. L. Schapf, "The control of visual sensitivity," in Visual Perception: The Neurophysiological Foundations, L.Spillmann and J.S.Werner, eds. (Academic, 1990).

Marini, L.

S. Zeki and L. Marini, "Three cortical stages of colour processing in the human brain," Brain 121, 1669-1686 (1998).
[CrossRef] [PubMed]

Marks, L. E.

L. E. Marks, "Scales of sensation: prolegomena to any future psychophysics that will be able to come forth as science," Percept. Psychophys. 16, 358-376 (1977).
[CrossRef]

J. C. Stevens and L. E. Marks, "Stevens power law in vision: exponents, intercepts, and thresholds," in Fechner Day 99: Proceeding of the Fifteenth Annual Meeting of the International Society for Psychophysics, P.Killeen and W.Uttal, eds. (ISP, 1999), pp. 82-87.

L. E. Marks, Sensory Processes: The New Psychophysics (Academic, 1974).

McCann, J. J.

McKeefry, D.

S. Zeki, S. Aglioti, D. McKeefry, and G. Berlucchi, "The neurological basis of conscious color perception in a blind patient," Proc. Natl. Acad. Sci. U.S.A. 96, 14124-14129 (1999).
[CrossRef] [PubMed]

Meister, M.

M. Meister and M. J. Berry, "The neural code of the retina," Neuron 22, 435-450 (1999).
[CrossRef] [PubMed]

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, "Adaptation of retinal processing to image contrast and spatial scale," Nature 386, 69-73 (1997).
[CrossRef] [PubMed]

Metelli, F.

F. Metelli, "The perception of transparency," Sci. Am. 230, 90-98 (1974).
[CrossRef] [PubMed]

Mizobe, K.

K. Mizobe, U. Polat, M. W. Pettet, and T. Kasamatsu, "Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field," Visual Neurosci. 18, 377-391 (2001).
[CrossRef]

Morland, A. B.

C. Kennard, M. Lawden, A. B. Morland, and K. H. Ruddock, "Color discrimination and color constancy are impaired in a patient with incomplete achromatopsia associated with prestriate cortical-lesions," Proc. R. Soc. London, Ser. B 206, 169-175 (1995).
[CrossRef]

Niederee, R.

V. Ekroll, F. Faul, and R. Niederee, "The peculiar nature of simultaneous colour contrast in uniform surrounds," Vision Res. 44, 1765-1786 (2004).
[CrossRef] [PubMed]

Onley, J. W.

Paradiso, M. A.

A. F. Rossi and M. A. Paradiso, "Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex," J. Neurosci. 19, 6145-6156 (1999).
[PubMed]

S. P. MacEvoy, W. Kim, and M. A. Paradiso, "Integration of surface information in primary visual cortex," Nat. Neurosci. 1, 616-620 (1998).
[CrossRef]

A. F. Rossi, C. D. Rittenhouse, and M. A. Paradiso, "The representation of brightness in primary visual cortex," Science 273, 1104-1107 (1996).
[CrossRef] [PubMed]

Pelli, D. G.

D. G. Pelli, "The VideoToolbox software for visual psychophysics: transforming numbers into movies," Spatial Vis. 10, 437-442.

Pettet, M. W.

K. Mizobe, U. Polat, M. W. Pettet, and T. Kasamatsu, "Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field," Visual Neurosci. 18, 377-391 (2001).
[CrossRef]

Polat, U.

K. Mizobe, U. Polat, M. W. Pettet, and T. Kasamatsu, "Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field," Visual Neurosci. 18, 377-391 (2001).
[CrossRef]

Popa, D.

M. E. Rudd and D. Popa, "A theory of the neural processes underlying edge integration in human lightness perception (abstract)," J. Vision 4, 345a, doi:10.1167/4.8.345 (2004).
[CrossRef]

M. E. Rudd and D. Popa, "Edge integration and edge interaction in achromatic color computation (abstract)," J. Vision 4, 79a, doi:10.1167/4.11.79 (2004).
[CrossRef]

Pretori, H.

C. Hess and H. Pretori, "Quantitative investigation of the lawfulness of simultaneous brightness contrast," H. Flock and J. H. Tenny, Percept. Mot. Skills 31, 947-969 (1884/1970).
[CrossRef]

Raab, D.

D. Raab, "Magnitude estimation of the brightness of brief foveal stimuli," Science 135, 42-43 (1962).
[CrossRef] [PubMed]

Reid, R. C.

R. C. Reid and R. Shapley, "Brightness induction by local contrast and the spatial dependence of assimilation," Vision Res. 28, 115-132 (1988).
[CrossRef] [PubMed]

R. Shapley and R. C. Reid, "Contrast and assimilation in the perception of brightness," Proc. Natl. Acad. Sci. U.S.A. 82, 5983-5986 (1985).
[CrossRef] [PubMed]

Rieke, F.

F. A. Dunn and F. Rieke, "The impact of photoreceptor noise on retina gain controls," Curr. Opin. Neurobiol. 16, 363-370 (2006).
[CrossRef] [PubMed]

Rittenhouse, C. D.

A. F. Rossi, C. D. Rittenhouse, and M. A. Paradiso, "The representation of brightness in primary visual cortex," Science 273, 1104-1107 (1996).
[CrossRef] [PubMed]

Rossi, A. F.

A. F. Rossi and M. A. Paradiso, "Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex," J. Neurosci. 19, 6145-6156 (1999).
[PubMed]

A. F. Rossi, C. D. Rittenhouse, and M. A. Paradiso, "The representation of brightness in primary visual cortex," Science 273, 1104-1107 (1996).
[CrossRef] [PubMed]

Rudd, M. E.

M. E. Rudd and I. K. Zemach, "Contrast polarity and edge integration in achromatic color perception," J. Opt. Soc. Am. A 24, 2134-2156 (2007).
[CrossRef]

M. E. Rudd and I. K. Zemach, "The highest luminance anchoring rule in achromatic color perception: some counterexamples and an alternative theory," J. Vision 5, 983-1003, doi:10.1167/5.11.5 (2005).
[CrossRef]

M. E. Rudd and I. K. Zemach, "Quantitative properties of achromatic color induction: An edge integration analysis," Vision Res. 44, 971-981 (2004).
[CrossRef] [PubMed]

M. E. Rudd and D. Popa, "Edge integration and edge interaction in achromatic color computation (abstract)," J. Vision 4, 79a, doi:10.1167/4.11.79 (2004).
[CrossRef]

M. E. Rudd and D. Popa, "A theory of the neural processes underlying edge integration in human lightness perception (abstract)," J. Vision 4, 345a, doi:10.1167/4.8.345 (2004).
[CrossRef]

I. K. Zemach and M. E. Rudd, "Spatial decay of achromatic color induction differs for lightness and darkness induction processes (abstract)," J. Vision 3, 421a, doi:10.1167/3.9.42 (2003).
[CrossRef]

M. E. Rudd, "Progress on a computational model of human achromatic color processing," Proc. Soc. Photo-Opt. Instrum. Eng. 5007, 170-181 (2003).

I. K. Zemach and M. E. Rudd, "Blocking of achromatic color induction signals by borders of different contrast polarities (abstract)," J. Vision 2, 106a, doi:10.1167/2.10.106 (2002).
[CrossRef]

M. E. Rudd, "Lightness computation by a neural filling-in mechanism," Proc. Soc. Photo-Opt. Instrum. Eng. 4299, 400-413 (2001).

M. E. Rudd and K. F. Arrington, "Darkness filling-in: a neural model of darkness induction," Vision Res. 41, 3649-3662 (2001).
[CrossRef] [PubMed]

M. E. Rudd, is preparing a manuscript to be called "Edge integration and anchoring in the perception of lightness, brightness, and brightness contrast."

Ruddock, K. H.

C. Kennard, M. Lawden, A. B. Morland, and K. H. Ruddock, "Color discrimination and color constancy are impaired in a patient with incomplete achromatopsia associated with prestriate cortical-lesions," Proc. R. Soc. London, Ser. B 206, 169-175 (1995).
[CrossRef]

Schapf, J. L.

J. Walraven, C. Enroth-Cugell, D. C. Hood, D. I. A. MacLeod, and J. L. Schapf, "The control of visual sensitivity," in Visual Perception: The Neurophysiological Foundations, L.Spillmann and J.S.Werner, eds. (Academic, 1990).

Schoppig, A.

S. Clarke, V. Walsh, A. Schoppig, G. Assal, and A. Cowey, "Colour constancy impairments in patients with lesions of the prestriate cortex," Exp. Brain Res. 123, 154-158 (1998).
[CrossRef] [PubMed]

Shapley, R.

R. C. Reid and R. Shapley, "Brightness induction by local contrast and the spatial dependence of assimilation," Vision Res. 28, 115-132 (1988).
[CrossRef] [PubMed]

R. Shapley and R. C. Reid, "Contrast and assimilation in the perception of brightness," Proc. Natl. Acad. Sci. U.S.A. 82, 5983-5986 (1985).
[CrossRef] [PubMed]

R. Shapley and C. Enroth-Cugell, "Visual adaptation and retinal gain controls," in Progress in Retinal Research 3, N.Osborne and G.Chader, eds. (Pergamon, 1984).
[CrossRef]

Shevell, S. K.

S. W. Hong and S. K. Shevell, "Brightness induction: unequal spatial integration with increments and decrements," Visual Neurosci. 21, 353-357 (2004).
[CrossRef]

S. K. Shevell, I. Holliday, and P. Whittle, "Two separate neural mechanisms of brightness induction," Vision Res. 32, 2331-2340 (1992).
[CrossRef] [PubMed]

Smirnakis, S. M.

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, "Adaptation of retinal processing to image contrast and spatial scale," Nature 386, 69-73 (1997).
[CrossRef] [PubMed]

Smithson, H. E.

H. E. Smithson, "Sensory, computational, and cognitive components of human colour constancy," Philos. Trans. R. Soc. London, Ser. B 360, 1329-1346, doi:10.1098/rstb.2005.1633 (2005).
[CrossRef] [PubMed]

Spehar, B.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, "An anchoring theory of lightness perception," Psychol. Rev. 106, 795-834 (1999).
[CrossRef] [PubMed]

L. E. Arend and B. Spehar, "Lightness, brightness and brightness contrast: II. Reflectance variation," Percept. Psychophys. 54, 457-468 (1993).
[CrossRef] [PubMed]

L. E. Arend and B. Spehar, "Lightness, brightness and brightness contrast: I. Illumination variation," Percept. Psychophys. 54, 446-456 (1993).
[CrossRef] [PubMed]

Stettler, D. D.

D. D. Stettler, A. Das, J. Bennett, and C. D. Gilbert, "Lateral connectivity and contextual interactions in macaque primary visual cortex," Neuron 36, 739-750 (2002).
[CrossRef] [PubMed]

Stevens, J. C.

J. C. Stevens, "Brightness inhibition re size of surround," Percept. Psychophys. 2, 189-192 (1967).
[CrossRef]

J. C. Stevens and L. E. Marks, "Stevens power law in vision: exponents, intercepts, and thresholds," in Fechner Day 99: Proceeding of the Fifteenth Annual Meeting of the International Society for Psychophysics, P.Killeen and W.Uttal, eds. (ISP, 1999), pp. 82-87.

Stevens, S. S.

S. S. Stevens, "Intensity functions in sensory systems," Int. J. Neurol. 6, 202-209 (1967).
[PubMed]

S. S. Stevens, "To honor Fechner and repeal his law," Science 133, 80-86 (1961).
[CrossRef] [PubMed]

S. S. Stevens, "On the brightness of lights and loudness of sounds (abstract)," Science 118, 576 (1953).

S. S. Stevens, "Sensory power functions and neural events," in Handbook of Sensory Physiology, D.Jameson and L.Hurvich, eds. (Springer, 1972), Vol. VII/7, pp. 226-242.

S. S. Stevens, Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects (Wiley, 1975).

Todorovic, D.

D. Todorovic, "Lightness and junctions," Perception 26, 379-394 (1997).
[CrossRef] [PubMed]

Vladusich, T.

T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, "Edge integration and the perception of brightness and darkness," J. Vision 6, 1126-1145, doi:10.1167/6/10.12 (2006).
[CrossRef]

F. W. Cornelissen, A. R. Wade, T. Vladusich, R. F. Dougherty, and B. A. Wandell, "No functional magnetic resonance imaging evidence for brightness and color filling-in in early human visual cortex," J. Neurosci. 26, 3634-3641 (2006).
[CrossRef] [PubMed]

T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, "Do cortical neurons process luminance or contrast to encode surface properties?" J. Neurophysiol. 95, 2638-2649 (2005).
[CrossRef] [PubMed]

Wade, A. R.

F. W. Cornelissen, A. R. Wade, T. Vladusich, R. F. Dougherty, and B. A. Wandell, "No functional magnetic resonance imaging evidence for brightness and color filling-in in early human visual cortex," J. Neurosci. 26, 3634-3641 (2006).
[CrossRef] [PubMed]

Wallach, H.

H. Wallach, "The perception of neutral colors," Sci. Am. 208, 107-116 (1963).
[CrossRef] [PubMed]

H. Wallach, "Brightness constancy and the nature of achromatic colors," J. Exp. Psychol. 38, 310-324 (1948).
[CrossRef] [PubMed]

H. Wallach, On Perception (Quadrangle, 1976).

Walraven, J.

J. Walraven, C. Enroth-Cugell, D. C. Hood, D. I. A. MacLeod, and J. L. Schapf, "The control of visual sensitivity," in Visual Perception: The Neurophysiological Foundations, L.Spillmann and J.S.Werner, eds. (Academic, 1990).

Walsh, V.

V. Walsh, "How does the cortex construct color?" Proc. Natl. Acad. Sci. U.S.A. 96, 13594-13596 (1999).
[CrossRef] [PubMed]

S. Clarke, V. Walsh, A. Schoppig, G. Assal, and A. Cowey, "Colour constancy impairments in patients with lesions of the prestriate cortex," Exp. Brain Res. 123, 154-158 (1998).
[CrossRef] [PubMed]

Wandell, B. A.

F. W. Cornelissen, A. R. Wade, T. Vladusich, R. F. Dougherty, and B. A. Wandell, "No functional magnetic resonance imaging evidence for brightness and color filling-in in early human visual cortex," J. Neurosci. 26, 3634-3641 (2006).
[CrossRef] [PubMed]

Warland, D. K.

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, "Adaptation of retinal processing to image contrast and spatial scale," Nature 386, 69-73 (1997).
[CrossRef] [PubMed]

Westheimer, G.

M. K. Kapadia, G. Westheimer, and C. D. Gilbert, "Spatial distribution of contextual interactions in primary visual cortex and in visual perception," J. Neurosci. 84, 2048-2062 (2000).

Whittle, P.

S. K. Shevell, I. Holliday, and P. Whittle, "Two separate neural mechanisms of brightness induction," Vision Res. 32, 2331-2340 (1992).
[CrossRef] [PubMed]

P. Whittle and P. D. C. Challands, "The effect of background luminance on the brightness of flashes," Vision Res. 9, 1095-1110 (1969).
[CrossRef] [PubMed]

P. Whittle, "Contrast brightness and ordinary seeing," in Lightness, Brightness, and Transparency, A.L.Gilchrist, ed. (Erlbaum, 1994), pp. 111-157.

Wiesel, T. N.

C. D. Gilbert and T. N. Wiesel, "Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex," J. Neurosci. 9, 2432-2442 (1989).
[PubMed]

Winawer, J.

B. L. Anderson and J. Winawer, "Image segmentation and lightness perception," Nature 434, 79-83 (2005).
[CrossRef] [PubMed]

Zeki, S.

A. Bartels and S. Zeki, "The architecture of the colour centre in the human visual brain: new results and a review," Eur. J. Neurosci. 12, 172-190 (2000).
[CrossRef] [PubMed]

S. Zeki, S. Aglioti, D. McKeefry, and G. Berlucchi, "The neurological basis of conscious color perception in a blind patient," Proc. Natl. Acad. Sci. U.S.A. 96, 14124-14129 (1999).
[CrossRef] [PubMed]

S. Zeki and L. Marini, "Three cortical stages of colour processing in the human brain," Brain 121, 1669-1686 (1998).
[CrossRef] [PubMed]

S. Zeki, A Vision of the Brain (Blackwell, 1993).

Zemach, I. K.

M. E. Rudd and I. K. Zemach, "Contrast polarity and edge integration in achromatic color perception," J. Opt. Soc. Am. A 24, 2134-2156 (2007).
[CrossRef]

M. E. Rudd and I. K. Zemach, "The highest luminance anchoring rule in achromatic color perception: some counterexamples and an alternative theory," J. Vision 5, 983-1003, doi:10.1167/5.11.5 (2005).
[CrossRef]

M. E. Rudd and I. K. Zemach, "Quantitative properties of achromatic color induction: An edge integration analysis," Vision Res. 44, 971-981 (2004).
[CrossRef] [PubMed]

I. K. Zemach and M. E. Rudd, "Spatial decay of achromatic color induction differs for lightness and darkness induction processes (abstract)," J. Vision 3, 421a, doi:10.1167/3.9.42 (2003).
[CrossRef]

I. K. Zemach and M. E. Rudd, "Blocking of achromatic color induction signals by borders of different contrast polarities (abstract)," J. Vision 2, 106a, doi:10.1167/2.10.106 (2002).
[CrossRef]

Brain (1)

S. Zeki and L. Marini, "Three cortical stages of colour processing in the human brain," Brain 121, 1669-1686 (1998).
[CrossRef] [PubMed]

Curr. Opin. Neurobiol. (1)

F. A. Dunn and F. Rieke, "The impact of photoreceptor noise on retina gain controls," Curr. Opin. Neurobiol. 16, 363-370 (2006).
[CrossRef] [PubMed]

Eur. J. Neurosci. (1)

A. Bartels and S. Zeki, "The architecture of the colour centre in the human visual brain: new results and a review," Eur. J. Neurosci. 12, 172-190 (2000).
[CrossRef] [PubMed]

Exp. Brain Res. (1)

S. Clarke, V. Walsh, A. Schoppig, G. Assal, and A. Cowey, "Colour constancy impairments in patients with lesions of the prestriate cortex," Exp. Brain Res. 123, 154-158 (1998).
[CrossRef] [PubMed]

Int. J. Neurol. (1)

S. S. Stevens, "Intensity functions in sensory systems," Int. J. Neurol. 6, 202-209 (1967).
[PubMed]

J. Exp. Psychol. (2)

H. Wallach, "Brightness constancy and the nature of achromatic colors," J. Exp. Psychol. 38, 310-324 (1948).
[CrossRef] [PubMed]

E. G. Heinemann, "Simultaneous brightness induction as a function of inducing- and test-field luminances," J. Exp. Psychol. 50, 89-96 (1955).
[CrossRef] [PubMed]

J. Neurophysiol. (2)

M. Kinoshita and H. Komatsu, "Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex," J. Neurophysiol. 86, 2559-2570 (2001).
[PubMed]

T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, "Do cortical neurons process luminance or contrast to encode surface properties?" J. Neurophysiol. 95, 2638-2649 (2005).
[CrossRef] [PubMed]

J. Neurosci. (6)

F. W. Cornelissen, A. R. Wade, T. Vladusich, R. F. Dougherty, and B. A. Wandell, "No functional magnetic resonance imaging evidence for brightness and color filling-in in early human visual cortex," J. Neurosci. 26, 3634-3641 (2006).
[CrossRef] [PubMed]

A. F. Rossi and M. A. Paradiso, "Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex," J. Neurosci. 19, 6145-6156 (1999).
[PubMed]

C. D. Gilbert and T. N. Wiesel, "Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex," J. Neurosci. 9, 2432-2442 (1989).
[PubMed]

J. A. Hirsch and C. D. Gilbert, "Synaptic physiology of horizontal connections in the cat's visual cortex," J. Neurosci. 11, 1800-1809 (1991).
[PubMed]

A. Grinvald, L. L. Lieke, R. D. Frostig, and R. Hildesheim, "Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex," J. Neurosci. 14, 2545-2568 (1994).
[PubMed]

M. K. Kapadia, G. Westheimer, and C. D. Gilbert, "Spatial distribution of contextual interactions in primary visual cortex and in visual perception," J. Neurosci. 84, 2048-2062 (2000).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Vision (6)

M. E. Rudd and I. K. Zemach, "The highest luminance anchoring rule in achromatic color perception: some counterexamples and an alternative theory," J. Vision 5, 983-1003, doi:10.1167/5.11.5 (2005).
[CrossRef]

M. E. Rudd and D. Popa, "A theory of the neural processes underlying edge integration in human lightness perception (abstract)," J. Vision 4, 345a, doi:10.1167/4.8.345 (2004).
[CrossRef]

M. E. Rudd and D. Popa, "Edge integration and edge interaction in achromatic color computation (abstract)," J. Vision 4, 79a, doi:10.1167/4.11.79 (2004).
[CrossRef]

I. K. Zemach and M. E. Rudd, "Blocking of achromatic color induction signals by borders of different contrast polarities (abstract)," J. Vision 2, 106a, doi:10.1167/2.10.106 (2002).
[CrossRef]

I. K. Zemach and M. E. Rudd, "Spatial decay of achromatic color induction differs for lightness and darkness induction processes (abstract)," J. Vision 3, 421a, doi:10.1167/3.9.42 (2003).
[CrossRef]

T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, "Edge integration and the perception of brightness and darkness," J. Vision 6, 1126-1145, doi:10.1167/6/10.12 (2006).
[CrossRef]

Jpn. Psychol. Res. (2)

A. Kozaki, "A further study in the relationship between brightness constancy and contrast," Jpn. Psychol. Res. 5, 129-136 (1963).

A. Kozaki, "The effect of co-existent stimuli other than the test stimulus on brightness constancy," Jpn. Psychol. Res. 7, 138-147 (1965).

Nat. Neurosci. (1)

S. P. MacEvoy, W. Kim, and M. A. Paradiso, "Integration of surface information in primary visual cortex," Nat. Neurosci. 1, 616-620 (1998).
[CrossRef]

Nature (2)

B. L. Anderson and J. Winawer, "Image segmentation and lightness perception," Nature 434, 79-83 (2005).
[CrossRef] [PubMed]

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, "Adaptation of retinal processing to image contrast and spatial scale," Nature 386, 69-73 (1997).
[CrossRef] [PubMed]

Neuron (3)

M. Meister and M. J. Berry, "The neural code of the retina," Neuron 22, 435-450 (1999).
[CrossRef] [PubMed]

N. Brenner, W. Bialek, and R. de Ruyter van Steveninck, "Adaptive rescaling maximizes information transmission," Neuron 26, 695-702 (2000).
[CrossRef] [PubMed]

D. D. Stettler, A. Das, J. Bennett, and C. D. Gilbert, "Lateral connectivity and contextual interactions in macaque primary visual cortex," Neuron 36, 739-750 (2002).
[CrossRef] [PubMed]

Neuropsychologia (1)

R. W. Kentridge, C. A. Heywood, and A. Cowey, "Chromatic edges, surfaces and constancies in cerebral achromatopsia." Neuropsychologia 42, 821-830 (2004).
[CrossRef] [PubMed]

Percept. Mot. Skills (1)

C. Hess and H. Pretori, "Quantitative investigation of the lawfulness of simultaneous brightness contrast," H. Flock and J. H. Tenny, Percept. Mot. Skills 31, 947-969 (1884/1970).
[CrossRef]

Percept. Psychophys. (8)

A. Jacobsen and A. Gilchrist, "Hess and Pretori revisited: resolution of some old contradictions," Percept. Psychophys. 43, 7-14 (1988).
[CrossRef] [PubMed]

T. Agostini and N. Bruno, "Lightness contrast in CRT and paper-and-illuminant displays," Percept. Psychophys. 58, 250-258 (1996).
[CrossRef] [PubMed]

A. L. Gilchrist, "Lightness contrast and failures of contrast: a common explanation," Percept. Psychophys. 43, 415-424 (1988).
[CrossRef] [PubMed]

L. E. Marks, "Scales of sensation: prolegomena to any future psychophysics that will be able to come forth as science," Percept. Psychophys. 16, 358-376 (1977).
[CrossRef]

L. E. Arend, J. N. Buehler, and G. R. Lockhead, "Difference information in brightness perception," Percept. Psychophys. 9, 367-370 (1971).
[CrossRef]

L. E. Arend and B. Spehar, "Lightness, brightness and brightness contrast: I. Illumination variation," Percept. Psychophys. 54, 446-456 (1993).
[CrossRef] [PubMed]

L. E. Arend and B. Spehar, "Lightness, brightness and brightness contrast: II. Reflectance variation," Percept. Psychophys. 54, 457-468 (1993).
[CrossRef] [PubMed]

J. C. Stevens, "Brightness inhibition re size of surround," Percept. Psychophys. 2, 189-192 (1967).
[CrossRef]

Perception (3)

D. Todorovic, "Lightness and junctions," Perception 26, 379-394 (1997).
[CrossRef] [PubMed]

B. L. Anderson, "A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions," Perception 26, 419-453 (1997).
[CrossRef] [PubMed]

P. Bressan and R. Actis-Grosso, "Simultaneous lightness contrast with double increments," Perception 30, 889-897 (2001).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London, Ser. B (1)

H. E. Smithson, "Sensory, computational, and cognitive components of human colour constancy," Philos. Trans. R. Soc. London, Ser. B 360, 1329-1346, doi:10.1098/rstb.2005.1633 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (5)

V. Walsh, "How does the cortex construct color?" Proc. Natl. Acad. Sci. U.S.A. 96, 13594-13596 (1999).
[CrossRef] [PubMed]

R. Shapley and R. C. Reid, "Contrast and assimilation in the perception of brightness," Proc. Natl. Acad. Sci. U.S.A. 82, 5983-5986 (1985).
[CrossRef] [PubMed]

E. H. Land, "Recent advances in Retinex theory and some implications for cortical computations: color vision and the natural image," Proc. Natl. Acad. Sci. U.S.A. 80, 5163-5169 (1983).
[CrossRef] [PubMed]

E. H. Land, "An alternative technique for the computation of the designator in the Retinex theory of color vision," Proc. Natl. Acad. Sci. U.S.A. 83, 3078-3080 (1986).
[CrossRef] [PubMed]

S. Zeki, S. Aglioti, D. McKeefry, and G. Berlucchi, "The neurological basis of conscious color perception in a blind patient," Proc. Natl. Acad. Sci. U.S.A. 96, 14124-14129 (1999).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. B (1)

C. Kennard, M. Lawden, A. B. Morland, and K. H. Ruddock, "Color discrimination and color constancy are impaired in a patient with incomplete achromatopsia associated with prestriate cortical-lesions," Proc. R. Soc. London, Ser. B 206, 169-175 (1995).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

M. E. Rudd, "Progress on a computational model of human achromatic color processing," Proc. Soc. Photo-Opt. Instrum. Eng. 5007, 170-181 (2003).

M. E. Rudd, "Lightness computation by a neural filling-in mechanism," Proc. Soc. Photo-Opt. Instrum. Eng. 4299, 400-413 (2001).

Psychol. Rev. (2)

P. Bressan, "The place of white in a world of grays: a double-anchoring theory of lightness perception," Psychol. Rev. 113, 526-553 (2006).
[CrossRef] [PubMed]

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, "An anchoring theory of lightness perception," Psychol. Rev. 106, 795-834 (1999).
[CrossRef] [PubMed]

Sci. Am. (3)

H. Wallach, "The perception of neutral colors," Sci. Am. 208, 107-116 (1963).
[CrossRef] [PubMed]

F. Metelli, "The perception of transparency," Sci. Am. 230, 90-98 (1974).
[CrossRef] [PubMed]

E. H. Land, "The Retinex theory of color vision," Sci. Am. 237, 108-128 (1977).
[CrossRef] [PubMed]

Science (4)

A. F. Rossi, C. D. Rittenhouse, and M. A. Paradiso, "The representation of brightness in primary visual cortex," Science 273, 1104-1107 (1996).
[CrossRef] [PubMed]

S. S. Stevens, "On the brightness of lights and loudness of sounds (abstract)," Science 118, 576 (1953).

S. S. Stevens, "To honor Fechner and repeal his law," Science 133, 80-86 (1961).
[CrossRef] [PubMed]

D. Raab, "Magnitude estimation of the brightness of brief foveal stimuli," Science 135, 42-43 (1962).
[CrossRef] [PubMed]

Spatial Vis. (2)

D. H. Brainard, "The psychophysics toolbox," Spatial Vis. 10, 233-236 (1997).
[CrossRef]

D. G. Pelli, "The VideoToolbox software for visual psychophysics: transforming numbers into movies," Spatial Vis. 10, 437-442.

Vision Res. (7)

R. C. Reid and R. Shapley, "Brightness induction by local contrast and the spatial dependence of assimilation," Vision Res. 28, 115-132 (1988).
[CrossRef] [PubMed]

E. H. Land, "Recent advances in Retinex theory," Vision Res. 26, 7-21 (1986).
[CrossRef] [PubMed]

S. K. Shevell, I. Holliday, and P. Whittle, "Two separate neural mechanisms of brightness induction," Vision Res. 32, 2331-2340 (1992).
[CrossRef] [PubMed]

P. Whittle and P. D. C. Challands, "The effect of background luminance on the brightness of flashes," Vision Res. 9, 1095-1110 (1969).
[CrossRef] [PubMed]

V. Ekroll, F. Faul, and R. Niederee, "The peculiar nature of simultaneous colour contrast in uniform surrounds," Vision Res. 44, 1765-1786 (2004).
[CrossRef] [PubMed]

M. E. Rudd and I. K. Zemach, "Quantitative properties of achromatic color induction: An edge integration analysis," Vision Res. 44, 971-981 (2004).
[CrossRef] [PubMed]

M. E. Rudd and K. F. Arrington, "Darkness filling-in: a neural model of darkness induction," Vision Res. 41, 3649-3662 (2001).
[CrossRef] [PubMed]

Visual Neurosci. (2)

K. Mizobe, U. Polat, M. W. Pettet, and T. Kasamatsu, "Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field," Visual Neurosci. 18, 377-391 (2001).
[CrossRef]

S. W. Hong and S. K. Shevell, "Brightness induction: unequal spatial integration with increments and decrements," Visual Neurosci. 21, 353-357 (2004).
[CrossRef]

Other (11)

J. C. Stevens and L. E. Marks, "Stevens power law in vision: exponents, intercepts, and thresholds," in Fechner Day 99: Proceeding of the Fifteenth Annual Meeting of the International Society for Psychophysics, P.Killeen and W.Uttal, eds. (ISP, 1999), pp. 82-87.

P. Whittle, "Contrast brightness and ordinary seeing," in Lightness, Brightness, and Transparency, A.L.Gilchrist, ed. (Erlbaum, 1994), pp. 111-157.

S. S. Stevens, "Sensory power functions and neural events," in Handbook of Sensory Physiology, D.Jameson and L.Hurvich, eds. (Springer, 1972), Vol. VII/7, pp. 226-242.

L. E. Marks, Sensory Processes: The New Psychophysics (Academic, 1974).

S. S. Stevens, Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects (Wiley, 1975).

S. Zeki, A Vision of the Brain (Blackwell, 1993).

H. Wallach, On Perception (Quadrangle, 1976).

E. G. Heinemann, "Simultaneous brightness induction," in Handbook of Sensory Physiology, D.Jameson andL.Hurvich, eds. (Springer, 1972), Vol. VII/4, pp.146-169.

R. Shapley and C. Enroth-Cugell, "Visual adaptation and retinal gain controls," in Progress in Retinal Research 3, N.Osborne and G.Chader, eds. (Pergamon, 1984).
[CrossRef]

J. Walraven, C. Enroth-Cugell, D. C. Hood, D. I. A. MacLeod, and J. L. Schapf, "The control of visual sensitivity," in Visual Perception: The Neurophysiological Foundations, L.Spillmann and J.S.Werner, eds. (Academic, 1990).

M. E. Rudd, is preparing a manuscript to be called "Edge integration and anchoring in the perception of lightness, brightness, and brightness contrast."

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Results of the brightness matching experiment of J. C. Stevens [19]. The observer adjusted the luminance T L or T R of a decremental matching disk shown to either the left eye ( T L ) or right eye ( T R ) as a function of the luminance of the other disk and the width of a ring surrounding the left disk. The right disk was surrounded by a ring of fixed width. Disk luminances are plotted on a logarithmic scale. The plots labeled S 1 S 6 correspond to left ring widths ranging from 0.23 deg ( S 1 )   to   2.68 deg ( S 6 ) . Linear plots on this log–log scale indicate that disk brightness varies as a power law of luminance. Steeper plots (wide rings) correspond to larger power law exponents.

Fig. 2
Fig. 2

Visual stimulus used in experiments 1 and 2.

Fig. 3
Fig. 3

Observers’ log matching square settings plotted as a function of the log test square luminance. Data from experiment 1, decremental squares. Successive plots have been shifted upward on the graph, each by an additional 0.1 log unit. The data from the 0.12 deg test frame width condition is not shifted. Solid lines indicate the least-squares linear regression model of the data. (a) Data from observer AH. (b) Data from observer JA.

Fig. 4
Fig. 4

Slopes of the least-squares linear regression models of the log matching square luminance versus log test square luminance data from experiment 1 (decremental squares) plotted as a function of test frame width. The solid lines correspond to the least-squares linear models of the slope versus test frame width data for each of the two subjects.

Fig. 5
Fig. 5

Intercepts of the least-squares linear regression models of the log matching square luminance versus log test square luminance data from experiment 1 (decremental squares) plotted as a function of test frame width. The solid lines correspond to the least-squares linear models of the intercept versus test frame width data for each of the two subjects.

Fig. 6
Fig. 6

Observers’ log matching square settings plotted as a function of the log test square luminance. Data from experiment 2, incremental squares. Successive plots have been shifted upward on the graph, each by an additional 0.1 log unit. The data from the 0.12 deg test frame width condition is not shifted. Solid lines indicate the least-squares linear regression model of the data. (a) Data from observer AH. (b) Data from observer JA.

Fig. 7
Fig. 7

Slopes of the least-squares linear regression models of the log matching square luminance versus log test square luminance data from experiment 1 (incremental squares) plotted as a function of test frame width. The solid lines correspond to the least-squares linear models of the slope versus test frame width data for each of the two subjects.

Fig. 8
Fig. 8

Intercepts of the least-squares linear regression models of the log matching square luminance versus log test square luminance data from experiment 2 (incremental squares) plotted as a function of test frame width. The solid lines correspond to the least-squares linear models of the intercept versus test frame width data for each of the two subjects.

Tables (4)

Tables Icon

Table 1 Results of the Linear Regression Analyses of the log Matching Square Luminance versus log Test Square Luminance Data from Experiment 1 (Decremental Squares)

Tables Icon

Table 2 Summary of the Least-Squares Linear and Second-Order Polynomial Regression Models Relating the Slopes and Intercepts of the log S M vs log S T Plots shown in Fig. 2 to the Test Frame Width (Experiment 1, Decremental Squares) a

Tables Icon

Table 3 Results of the Linear Regression Analyses of the log Matching Square Luminance versus log Test Square Luminance Data from Experiment 2 (Incremental Squares)

Tables Icon

Table 4 Summary of the Least-Square Linear and Second-Order Polynomial Regression Models Relating the Slopes and Intercepts of the log S M vs log S T Plots Shown in Fig. 5 to the Test Frame Width (Experiment 2, Incremental Squares) a

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

Ψ = θ I γ ,
θ ( d L ) D L γ ( d L ) = θ ( d R ) D R γ ( d R ) .
log θ ( d L ) + γ ( d L ) log D L = log θ ( d R ) + γ ( d R ) log D R .
log D i = log θ ( d j ) log θ ( d i ) γ ( d i ) + γ ( d j ) γ ( d i ) log D j ,
log S M = log θ ( d T ) log θ ( d M ) γ ( d M ) + γ ( d T ) γ ( d M ) log S T .
Φ = w 1 log S F + w 2 log F B ,
w 1 M log S M F M + w 2 M log F M B = w 1 T log S T F T + w 2 T log F T B .
w 1 k = w 1 k * ( 1 + α ( 2 1 ) k log F k B ) ,
w 2 k = w 2 k * ( 1 + α ( 1 2 ) k log S k F k ) ,
α ( n m ) k = ν ( n m ) k [ 1 + d k s ( n m ) k ] + ,
γ ( d k ) = w 1 k * + ( w 1 k * ε 2 ν ( 2 1 ) k [ 1 d k s ( 2 1 ) k ] + w 2 k * ε 1 ν ( 1 2 ) k [ 1 d k s ( 1 2 ) k ] + ) ( log F k log B ) ,
log S M = ( a 1 + a 2 d T ) + ( a 3 + a 4 d T ) log S T ,
Φ k = w 1 k * ( 1 + ν ( 2 1 ) k [ 1 d k s ( 2 1 ) k ] + log F k B ) log S k F k + w 2 k * ( 1 + ν ( 1 2 ) k [ 1 d k s ( 1 2 ) k ] + log S k F k ) log F k B ,
log S M = c 0 1 ( c 1 + [ c 2 + c 3 d T ] + + [ c 4 + c 5 d T ] + ) + ( c 6 + [ c 7 + c 8 d T ] + + [ c 9 + c 10 d T ] + ) log S T ,
c 0 = w 1 M * + ( w 1 M * ε 2 ν ( 2 1 ) M [ 1 d M s ( 2 1 ) M ] + + w 2 M * ε 1 ν ( 1 2 ) M [ 1 d M s ( 1 2 ) M ] + ) ( log F M log B ) ,
c 1 = ( w 1 M * w 2 M * ) log F M ( w 1 T * w 2 T * ) log F T + ( w 2 M * w 2 T * ) log B + ( w 1 M * ε 2 ν ( 2 1 ) M [ 1 d M s ( 2 1 ) M ] + + w 2 M * ε 1 ν ( 1 2 ) M [ 1 d M s ( 1 2 ) M ] + ) log F M ( log F M log B ) ,
c 2 = w 1 T * ε 2 ν ( 2 1 ) T log F T ( log F T log B ) ,
c 3 = w 1 T * ε 2 ν ( 2 1 ) T s ( 2 1 ) T log F T ( log F T log B ) ,
c 4 = w 2 T * ε 1 ν ( 1 2 ) T log F T ( log F T log B ) ,
c 5 = w 2 T * ε 1 ν ( 1 2 ) T s ( 1 2 ) T log F T ( log F T log B ) ,
c 6 = w 1 T * ,
c 7 = w 1 T * ε 2 ν ( 2 1 ) T ( log F T log B ) ,
c 8 = w 1 T * ε 2 ν ( 2 1 ) T s ( 2 1 ) T ( log F T log B ) ,
c 9 = w 2 T * ε 1 ν ( 1 2 ) T ( log F T log B ) ,
c 10 = w 2 T * ε 1 ν ( 1 2 ) T s ( 1 2 ) T ( log F T log B ) .
γ ( d T ) = γ ( d M ) c 0 1 ( c 6 + [ c 7 + c 8 d T ] + + [ c 9 + c 10 d T ] + ) .
log Ψ = log θ + γ ( d k ) log S k ,
log Ψ = Φ k ,
γ ( d k ) = w 1 k * + ( w 1 k * ν ( 2 1 ) k ε 2 [ 1 d k s ( 2 1 ) k ] + + w 2 k * ν ( 1 2 ) k ε 1 [ 1 d k s ( 1 2 ) k ] + ) ( log F k log B ) ,
log θ ( d k ) = ( w 1 k * w 2 k * ) log F k w 2 k * log B ( w 1 k * v ( 2 1 ) k ε 2 [ 1 d k s ( 2 1 ) k ] + + w 2 k * v ( 1 2 ) k ε 1 [ 1 d k s ( 1 2 ) k ] + ) log F k ( log F k log B ) .

Metrics