Abstract

Our previous results showed that while amblyopes can efficiently integrate visual signals, they are poor at segregating signals in noise. This could be either because integration detectors have broader bandwidths or because of a selective extrastriate segregation anomaly. One consequence of the former would be poorer variance discrimination. Using a two-alternative forced-choice paradigm, observers were asked to judge the orientational variance for arrays of 16 Gabors. All observers, be they normal or amblyopic, could perform the task similarly, although at high spatial frequencies, amblyopic eyes needed slightly more incremental variance than the normal eyes. We conclude that normals and amblyopes integrate signals in a similar way.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, "Deficits to global motion processing in human amblyopia," Vision Res. 43, 729-738 (2003).
    [CrossRef] [PubMed]
  2. A. J. Simmers, T. Ledgeway, and R. F. Hess, "The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia," Vision Res. 45, 449-460 (2005).
    [CrossRef]
  3. B. Mansouri and R. F. Hess, "The global processing deficit in amblyopia involves noise segregation," Vision Res. 46, 4104-4117 (2006).
    [CrossRef] [PubMed]
  4. B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
    [CrossRef] [PubMed]
  5. R. F. Hess, B. Mansouri, S. C. Dakin, and H. A. Allen, "Integration of local motion is normal in amblyopia," J. Opt. Soc. Am. A 23, 986-992 (2006).
    [CrossRef]
  6. J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome, "The analysis of moving visual patterns," in Pattern Recognition Mechanisms, C.Chagas, R.Gattass, and C.Gross, eds. (Vatican Press, 1985), pp. 117-151.
  7. W. T. Newsome and E. B. Pare, "A selective impairment of motion perception following lesions of the middle temporal visual area (MT)," J. Neurosci. 8, 2201-2211 (1988).
    [PubMed]
  8. C. L. Baker, Jr., R. F. Hess, and J. Zihl, "Residual motion perception in a "motion-blind" patient, assessed with limited-lifetime random dot stimuli," J. Neurosci. 11, 454-461 (1991).
    [PubMed]
  9. D. H. Brainard, "The Psychophysics Toolbox," Spatial Vis. 10, 433-436 (1997).
    [CrossRef]
  10. D. G. Pelli, "The Video Toolbox software for visual psychophysics: transforming numbers into movies," Spatial Vis. 10, 437-442 (1997).
    [CrossRef]
  11. D. G. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991).
    [CrossRef] [PubMed]
  12. R. F. Hess and A. Bradley, "Contrast coding in amblyopia is only minimally impaired above threshold," Nature 287, 463-464 (1980).
    [CrossRef] [PubMed]
  13. R. J. Watt and D. Andrews, "APE: adaptive probit estimation of psychometric functions," Cur. Psychol. Rev. 1, 205-214 (1981).
  14. D. H. Foster and W. F. Bischof, "Bootstrap variance estimators for the parameters of small-sample sensory-performance functions," Biol. Cybern. 57, 341-347 (1987).
    [CrossRef] [PubMed]
  15. R. F. Hess and E. R. Howell, "The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification," Vision Res. 17, 1049-1055 (1977).
    [CrossRef] [PubMed]
  16. R. F. Hess, T. Ledgeway, and S. Dakin, "Impoverished second-order input to global linking in human vision," Vision Res. 40, 3309-3318 (2000).
    [CrossRef] [PubMed]
  17. D. Regan, Human Perception of Objects (Sinauer Associates Inc., 2000).
  18. D. M. Levi, R. S. Harwerth, and E. L. Smith, "Binocular interactions in normal and anomalous binocular vision," Doc. Ophthalmol. 49, 303-324 (1980).
    [CrossRef] [PubMed]
  19. L. Kiorpes, "Visual processing in amblyopia: animal studies," Strabismus 14, 3-10 (2006).
    [CrossRef] [PubMed]
  20. L. Kiorpes, D. C. Kiper, L. P. O'Keefe, J. R. Cavanaugh, and J. A. Movshon, "Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia," J. Neurosci. 18, 6411-6424 (1998).
    [PubMed]
  21. B. C. Skottun, A. Bradley, and R. D. Freeman, "Orientation discrimination in amblyopia," Invest. Ophthalmol. Visual Sci. 27, 532-537 (1986).
  22. I. Rentschler and R. Hilz, "Abnormal orientation selectivity in both eyes of strabismic amblyopes," Exp. Brain Res. 37, 187-191 (1979).
    [CrossRef] [PubMed]
  23. E. Vandenbussche, R. Vogels, and G. A. Orban, "Human orientation discrimination: changes with eccentricity in normal and amblyopic vision," Invest. Ophthalmol. Visual Sci. 27, 237-245 (1986).
  24. R. Demanins, R. F. Hess, C. B. Williams, and D. R. Keeble, "The orientation discrimination deficit in strabismic amblyopia depends upon stimulus bandwidth," Vision Res. 39, 4018-4031 (1999).
    [CrossRef]
  25. B. T. Barrett, I. E. Pacey, A. Bradley, L. N. Thibos, and P. Morrill, "Nonveridical visual perception in human amblyopia," Invest. Ophthalmol. Visual Sci. 44, 1555-1567 (2003).
    [CrossRef]
  26. R. F. Hess, F. W. Campbell, and T. Greenhalgh, "On the nature of the neural abnormality in human amblyopia; neural aberrations and neural sensitivity loss," Pfluegers Arch. Eur. J. Physiol. 377, 201-207 (1978).

2006 (3)

L. Kiorpes, "Visual processing in amblyopia: animal studies," Strabismus 14, 3-10 (2006).
[CrossRef] [PubMed]

B. Mansouri and R. F. Hess, "The global processing deficit in amblyopia involves noise segregation," Vision Res. 46, 4104-4117 (2006).
[CrossRef] [PubMed]

R. F. Hess, B. Mansouri, S. C. Dakin, and H. A. Allen, "Integration of local motion is normal in amblyopia," J. Opt. Soc. Am. A 23, 986-992 (2006).
[CrossRef]

2005 (1)

A. J. Simmers, T. Ledgeway, and R. F. Hess, "The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia," Vision Res. 45, 449-460 (2005).
[CrossRef]

2004 (1)

B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
[CrossRef] [PubMed]

2003 (2)

B. T. Barrett, I. E. Pacey, A. Bradley, L. N. Thibos, and P. Morrill, "Nonveridical visual perception in human amblyopia," Invest. Ophthalmol. Visual Sci. 44, 1555-1567 (2003).
[CrossRef]

A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, "Deficits to global motion processing in human amblyopia," Vision Res. 43, 729-738 (2003).
[CrossRef] [PubMed]

2000 (1)

R. F. Hess, T. Ledgeway, and S. Dakin, "Impoverished second-order input to global linking in human vision," Vision Res. 40, 3309-3318 (2000).
[CrossRef] [PubMed]

1999 (1)

R. Demanins, R. F. Hess, C. B. Williams, and D. R. Keeble, "The orientation discrimination deficit in strabismic amblyopia depends upon stimulus bandwidth," Vision Res. 39, 4018-4031 (1999).
[CrossRef]

1998 (1)

L. Kiorpes, D. C. Kiper, L. P. O'Keefe, J. R. Cavanaugh, and J. A. Movshon, "Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia," J. Neurosci. 18, 6411-6424 (1998).
[PubMed]

1997 (2)

D. H. Brainard, "The Psychophysics Toolbox," Spatial Vis. 10, 433-436 (1997).
[CrossRef]

D. G. Pelli, "The Video Toolbox software for visual psychophysics: transforming numbers into movies," Spatial Vis. 10, 437-442 (1997).
[CrossRef]

1991 (2)

D. G. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

C. L. Baker, Jr., R. F. Hess, and J. Zihl, "Residual motion perception in a "motion-blind" patient, assessed with limited-lifetime random dot stimuli," J. Neurosci. 11, 454-461 (1991).
[PubMed]

1988 (1)

W. T. Newsome and E. B. Pare, "A selective impairment of motion perception following lesions of the middle temporal visual area (MT)," J. Neurosci. 8, 2201-2211 (1988).
[PubMed]

1987 (1)

D. H. Foster and W. F. Bischof, "Bootstrap variance estimators for the parameters of small-sample sensory-performance functions," Biol. Cybern. 57, 341-347 (1987).
[CrossRef] [PubMed]

1986 (2)

B. C. Skottun, A. Bradley, and R. D. Freeman, "Orientation discrimination in amblyopia," Invest. Ophthalmol. Visual Sci. 27, 532-537 (1986).

E. Vandenbussche, R. Vogels, and G. A. Orban, "Human orientation discrimination: changes with eccentricity in normal and amblyopic vision," Invest. Ophthalmol. Visual Sci. 27, 237-245 (1986).

1981 (1)

R. J. Watt and D. Andrews, "APE: adaptive probit estimation of psychometric functions," Cur. Psychol. Rev. 1, 205-214 (1981).

1980 (2)

D. M. Levi, R. S. Harwerth, and E. L. Smith, "Binocular interactions in normal and anomalous binocular vision," Doc. Ophthalmol. 49, 303-324 (1980).
[CrossRef] [PubMed]

R. F. Hess and A. Bradley, "Contrast coding in amblyopia is only minimally impaired above threshold," Nature 287, 463-464 (1980).
[CrossRef] [PubMed]

1979 (1)

I. Rentschler and R. Hilz, "Abnormal orientation selectivity in both eyes of strabismic amblyopes," Exp. Brain Res. 37, 187-191 (1979).
[CrossRef] [PubMed]

1978 (1)

R. F. Hess, F. W. Campbell, and T. Greenhalgh, "On the nature of the neural abnormality in human amblyopia; neural aberrations and neural sensitivity loss," Pfluegers Arch. Eur. J. Physiol. 377, 201-207 (1978).

1977 (1)

R. F. Hess and E. R. Howell, "The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification," Vision Res. 17, 1049-1055 (1977).
[CrossRef] [PubMed]

Adelson, E. H.

J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome, "The analysis of moving visual patterns," in Pattern Recognition Mechanisms, C.Chagas, R.Gattass, and C.Gross, eds. (Vatican Press, 1985), pp. 117-151.

Allen, H. A.

R. F. Hess, B. Mansouri, S. C. Dakin, and H. A. Allen, "Integration of local motion is normal in amblyopia," J. Opt. Soc. Am. A 23, 986-992 (2006).
[CrossRef]

B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
[CrossRef] [PubMed]

Andrews, D.

R. J. Watt and D. Andrews, "APE: adaptive probit estimation of psychometric functions," Cur. Psychol. Rev. 1, 205-214 (1981).

Baker, C. L.

C. L. Baker, Jr., R. F. Hess, and J. Zihl, "Residual motion perception in a "motion-blind" patient, assessed with limited-lifetime random dot stimuli," J. Neurosci. 11, 454-461 (1991).
[PubMed]

Barrett, B. T.

B. T. Barrett, I. E. Pacey, A. Bradley, L. N. Thibos, and P. Morrill, "Nonveridical visual perception in human amblyopia," Invest. Ophthalmol. Visual Sci. 44, 1555-1567 (2003).
[CrossRef]

Bischof, W. F.

D. H. Foster and W. F. Bischof, "Bootstrap variance estimators for the parameters of small-sample sensory-performance functions," Biol. Cybern. 57, 341-347 (1987).
[CrossRef] [PubMed]

Bradley, A.

B. T. Barrett, I. E. Pacey, A. Bradley, L. N. Thibos, and P. Morrill, "Nonveridical visual perception in human amblyopia," Invest. Ophthalmol. Visual Sci. 44, 1555-1567 (2003).
[CrossRef]

B. C. Skottun, A. Bradley, and R. D. Freeman, "Orientation discrimination in amblyopia," Invest. Ophthalmol. Visual Sci. 27, 532-537 (1986).

R. F. Hess and A. Bradley, "Contrast coding in amblyopia is only minimally impaired above threshold," Nature 287, 463-464 (1980).
[CrossRef] [PubMed]

Brainard, D. H.

D. H. Brainard, "The Psychophysics Toolbox," Spatial Vis. 10, 433-436 (1997).
[CrossRef]

Campbell, F. W.

R. F. Hess, F. W. Campbell, and T. Greenhalgh, "On the nature of the neural abnormality in human amblyopia; neural aberrations and neural sensitivity loss," Pfluegers Arch. Eur. J. Physiol. 377, 201-207 (1978).

Cavanaugh, J. R.

L. Kiorpes, D. C. Kiper, L. P. O'Keefe, J. R. Cavanaugh, and J. A. Movshon, "Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia," J. Neurosci. 18, 6411-6424 (1998).
[PubMed]

Dakin, S.

R. F. Hess, T. Ledgeway, and S. Dakin, "Impoverished second-order input to global linking in human vision," Vision Res. 40, 3309-3318 (2000).
[CrossRef] [PubMed]

Dakin, S. C.

R. F. Hess, B. Mansouri, S. C. Dakin, and H. A. Allen, "Integration of local motion is normal in amblyopia," J. Opt. Soc. Am. A 23, 986-992 (2006).
[CrossRef]

B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
[CrossRef] [PubMed]

Demanins, R.

R. Demanins, R. F. Hess, C. B. Williams, and D. R. Keeble, "The orientation discrimination deficit in strabismic amblyopia depends upon stimulus bandwidth," Vision Res. 39, 4018-4031 (1999).
[CrossRef]

Ehrt, O.

B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
[CrossRef] [PubMed]

Foster, D. H.

D. H. Foster and W. F. Bischof, "Bootstrap variance estimators for the parameters of small-sample sensory-performance functions," Biol. Cybern. 57, 341-347 (1987).
[CrossRef] [PubMed]

Freeman, R. D.

B. C. Skottun, A. Bradley, and R. D. Freeman, "Orientation discrimination in amblyopia," Invest. Ophthalmol. Visual Sci. 27, 532-537 (1986).

Gizzi, M. S.

J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome, "The analysis of moving visual patterns," in Pattern Recognition Mechanisms, C.Chagas, R.Gattass, and C.Gross, eds. (Vatican Press, 1985), pp. 117-151.

Greenhalgh, T.

R. F. Hess, F. W. Campbell, and T. Greenhalgh, "On the nature of the neural abnormality in human amblyopia; neural aberrations and neural sensitivity loss," Pfluegers Arch. Eur. J. Physiol. 377, 201-207 (1978).

Harwerth, R. S.

D. M. Levi, R. S. Harwerth, and E. L. Smith, "Binocular interactions in normal and anomalous binocular vision," Doc. Ophthalmol. 49, 303-324 (1980).
[CrossRef] [PubMed]

Hess, R. F.

B. Mansouri and R. F. Hess, "The global processing deficit in amblyopia involves noise segregation," Vision Res. 46, 4104-4117 (2006).
[CrossRef] [PubMed]

R. F. Hess, B. Mansouri, S. C. Dakin, and H. A. Allen, "Integration of local motion is normal in amblyopia," J. Opt. Soc. Am. A 23, 986-992 (2006).
[CrossRef]

A. J. Simmers, T. Ledgeway, and R. F. Hess, "The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia," Vision Res. 45, 449-460 (2005).
[CrossRef]

B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
[CrossRef] [PubMed]

A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, "Deficits to global motion processing in human amblyopia," Vision Res. 43, 729-738 (2003).
[CrossRef] [PubMed]

R. F. Hess, T. Ledgeway, and S. Dakin, "Impoverished second-order input to global linking in human vision," Vision Res. 40, 3309-3318 (2000).
[CrossRef] [PubMed]

R. Demanins, R. F. Hess, C. B. Williams, and D. R. Keeble, "The orientation discrimination deficit in strabismic amblyopia depends upon stimulus bandwidth," Vision Res. 39, 4018-4031 (1999).
[CrossRef]

C. L. Baker, Jr., R. F. Hess, and J. Zihl, "Residual motion perception in a "motion-blind" patient, assessed with limited-lifetime random dot stimuli," J. Neurosci. 11, 454-461 (1991).
[PubMed]

R. F. Hess and A. Bradley, "Contrast coding in amblyopia is only minimally impaired above threshold," Nature 287, 463-464 (1980).
[CrossRef] [PubMed]

R. F. Hess, F. W. Campbell, and T. Greenhalgh, "On the nature of the neural abnormality in human amblyopia; neural aberrations and neural sensitivity loss," Pfluegers Arch. Eur. J. Physiol. 377, 201-207 (1978).

R. F. Hess and E. R. Howell, "The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification," Vision Res. 17, 1049-1055 (1977).
[CrossRef] [PubMed]

Hilz, R.

I. Rentschler and R. Hilz, "Abnormal orientation selectivity in both eyes of strabismic amblyopes," Exp. Brain Res. 37, 187-191 (1979).
[CrossRef] [PubMed]

Howell, E. R.

R. F. Hess and E. R. Howell, "The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification," Vision Res. 17, 1049-1055 (1977).
[CrossRef] [PubMed]

Keeble, D. R.

R. Demanins, R. F. Hess, C. B. Williams, and D. R. Keeble, "The orientation discrimination deficit in strabismic amblyopia depends upon stimulus bandwidth," Vision Res. 39, 4018-4031 (1999).
[CrossRef]

Kiorpes, L.

L. Kiorpes, "Visual processing in amblyopia: animal studies," Strabismus 14, 3-10 (2006).
[CrossRef] [PubMed]

L. Kiorpes, D. C. Kiper, L. P. O'Keefe, J. R. Cavanaugh, and J. A. Movshon, "Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia," J. Neurosci. 18, 6411-6424 (1998).
[PubMed]

Kiper, D. C.

L. Kiorpes, D. C. Kiper, L. P. O'Keefe, J. R. Cavanaugh, and J. A. Movshon, "Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia," J. Neurosci. 18, 6411-6424 (1998).
[PubMed]

Ledgeway, T.

A. J. Simmers, T. Ledgeway, and R. F. Hess, "The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia," Vision Res. 45, 449-460 (2005).
[CrossRef]

A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, "Deficits to global motion processing in human amblyopia," Vision Res. 43, 729-738 (2003).
[CrossRef] [PubMed]

R. F. Hess, T. Ledgeway, and S. Dakin, "Impoverished second-order input to global linking in human vision," Vision Res. 40, 3309-3318 (2000).
[CrossRef] [PubMed]

Levi, D. M.

D. M. Levi, R. S. Harwerth, and E. L. Smith, "Binocular interactions in normal and anomalous binocular vision," Doc. Ophthalmol. 49, 303-324 (1980).
[CrossRef] [PubMed]

Mansouri, B.

B. Mansouri and R. F. Hess, "The global processing deficit in amblyopia involves noise segregation," Vision Res. 46, 4104-4117 (2006).
[CrossRef] [PubMed]

R. F. Hess, B. Mansouri, S. C. Dakin, and H. A. Allen, "Integration of local motion is normal in amblyopia," J. Opt. Soc. Am. A 23, 986-992 (2006).
[CrossRef]

B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
[CrossRef] [PubMed]

McGraw, P. V.

A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, "Deficits to global motion processing in human amblyopia," Vision Res. 43, 729-738 (2003).
[CrossRef] [PubMed]

Morrill, P.

B. T. Barrett, I. E. Pacey, A. Bradley, L. N. Thibos, and P. Morrill, "Nonveridical visual perception in human amblyopia," Invest. Ophthalmol. Visual Sci. 44, 1555-1567 (2003).
[CrossRef]

Movshon, J. A.

L. Kiorpes, D. C. Kiper, L. P. O'Keefe, J. R. Cavanaugh, and J. A. Movshon, "Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia," J. Neurosci. 18, 6411-6424 (1998).
[PubMed]

J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome, "The analysis of moving visual patterns," in Pattern Recognition Mechanisms, C.Chagas, R.Gattass, and C.Gross, eds. (Vatican Press, 1985), pp. 117-151.

Newsome, W. T.

W. T. Newsome and E. B. Pare, "A selective impairment of motion perception following lesions of the middle temporal visual area (MT)," J. Neurosci. 8, 2201-2211 (1988).
[PubMed]

J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome, "The analysis of moving visual patterns," in Pattern Recognition Mechanisms, C.Chagas, R.Gattass, and C.Gross, eds. (Vatican Press, 1985), pp. 117-151.

O'Keefe, L. P.

L. Kiorpes, D. C. Kiper, L. P. O'Keefe, J. R. Cavanaugh, and J. A. Movshon, "Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia," J. Neurosci. 18, 6411-6424 (1998).
[PubMed]

Orban, G. A.

E. Vandenbussche, R. Vogels, and G. A. Orban, "Human orientation discrimination: changes with eccentricity in normal and amblyopic vision," Invest. Ophthalmol. Visual Sci. 27, 237-245 (1986).

Pacey, I. E.

B. T. Barrett, I. E. Pacey, A. Bradley, L. N. Thibos, and P. Morrill, "Nonveridical visual perception in human amblyopia," Invest. Ophthalmol. Visual Sci. 44, 1555-1567 (2003).
[CrossRef]

Pare, E. B.

W. T. Newsome and E. B. Pare, "A selective impairment of motion perception following lesions of the middle temporal visual area (MT)," J. Neurosci. 8, 2201-2211 (1988).
[PubMed]

Pelli, D. G.

D. G. Pelli, "The Video Toolbox software for visual psychophysics: transforming numbers into movies," Spatial Vis. 10, 437-442 (1997).
[CrossRef]

D. G. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

Regan, D.

D. Regan, Human Perception of Objects (Sinauer Associates Inc., 2000).

Rentschler, I.

I. Rentschler and R. Hilz, "Abnormal orientation selectivity in both eyes of strabismic amblyopes," Exp. Brain Res. 37, 187-191 (1979).
[CrossRef] [PubMed]

Simmers, A. J.

A. J. Simmers, T. Ledgeway, and R. F. Hess, "The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia," Vision Res. 45, 449-460 (2005).
[CrossRef]

A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, "Deficits to global motion processing in human amblyopia," Vision Res. 43, 729-738 (2003).
[CrossRef] [PubMed]

Skottun, B. C.

B. C. Skottun, A. Bradley, and R. D. Freeman, "Orientation discrimination in amblyopia," Invest. Ophthalmol. Visual Sci. 27, 532-537 (1986).

Smith, E. L.

D. M. Levi, R. S. Harwerth, and E. L. Smith, "Binocular interactions in normal and anomalous binocular vision," Doc. Ophthalmol. 49, 303-324 (1980).
[CrossRef] [PubMed]

Thibos, L. N.

B. T. Barrett, I. E. Pacey, A. Bradley, L. N. Thibos, and P. Morrill, "Nonveridical visual perception in human amblyopia," Invest. Ophthalmol. Visual Sci. 44, 1555-1567 (2003).
[CrossRef]

Vandenbussche, E.

E. Vandenbussche, R. Vogels, and G. A. Orban, "Human orientation discrimination: changes with eccentricity in normal and amblyopic vision," Invest. Ophthalmol. Visual Sci. 27, 237-245 (1986).

Vogels, R.

E. Vandenbussche, R. Vogels, and G. A. Orban, "Human orientation discrimination: changes with eccentricity in normal and amblyopic vision," Invest. Ophthalmol. Visual Sci. 27, 237-245 (1986).

Watt, R. J.

R. J. Watt and D. Andrews, "APE: adaptive probit estimation of psychometric functions," Cur. Psychol. Rev. 1, 205-214 (1981).

Williams, C. B.

R. Demanins, R. F. Hess, C. B. Williams, and D. R. Keeble, "The orientation discrimination deficit in strabismic amblyopia depends upon stimulus bandwidth," Vision Res. 39, 4018-4031 (1999).
[CrossRef]

Zhang, L.

D. G. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

Zihl, J.

C. L. Baker, Jr., R. F. Hess, and J. Zihl, "Residual motion perception in a "motion-blind" patient, assessed with limited-lifetime random dot stimuli," J. Neurosci. 11, 454-461 (1991).
[PubMed]

Biol. Cybern. (1)

D. H. Foster and W. F. Bischof, "Bootstrap variance estimators for the parameters of small-sample sensory-performance functions," Biol. Cybern. 57, 341-347 (1987).
[CrossRef] [PubMed]

Cur. Psychol. Rev. (1)

R. J. Watt and D. Andrews, "APE: adaptive probit estimation of psychometric functions," Cur. Psychol. Rev. 1, 205-214 (1981).

Doc. Ophthalmol. (1)

D. M. Levi, R. S. Harwerth, and E. L. Smith, "Binocular interactions in normal and anomalous binocular vision," Doc. Ophthalmol. 49, 303-324 (1980).
[CrossRef] [PubMed]

Exp. Brain Res. (1)

I. Rentschler and R. Hilz, "Abnormal orientation selectivity in both eyes of strabismic amblyopes," Exp. Brain Res. 37, 187-191 (1979).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (3)

E. Vandenbussche, R. Vogels, and G. A. Orban, "Human orientation discrimination: changes with eccentricity in normal and amblyopic vision," Invest. Ophthalmol. Visual Sci. 27, 237-245 (1986).

B. T. Barrett, I. E. Pacey, A. Bradley, L. N. Thibos, and P. Morrill, "Nonveridical visual perception in human amblyopia," Invest. Ophthalmol. Visual Sci. 44, 1555-1567 (2003).
[CrossRef]

B. C. Skottun, A. Bradley, and R. D. Freeman, "Orientation discrimination in amblyopia," Invest. Ophthalmol. Visual Sci. 27, 532-537 (1986).

J. Neurosci. (3)

L. Kiorpes, D. C. Kiper, L. P. O'Keefe, J. R. Cavanaugh, and J. A. Movshon, "Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia," J. Neurosci. 18, 6411-6424 (1998).
[PubMed]

W. T. Newsome and E. B. Pare, "A selective impairment of motion perception following lesions of the middle temporal visual area (MT)," J. Neurosci. 8, 2201-2211 (1988).
[PubMed]

C. L. Baker, Jr., R. F. Hess, and J. Zihl, "Residual motion perception in a "motion-blind" patient, assessed with limited-lifetime random dot stimuli," J. Neurosci. 11, 454-461 (1991).
[PubMed]

J. Opt. Soc. Am. A (1)

Nature (1)

R. F. Hess and A. Bradley, "Contrast coding in amblyopia is only minimally impaired above threshold," Nature 287, 463-464 (1980).
[CrossRef] [PubMed]

Pfluegers Arch. Eur. J. Physiol. (1)

R. F. Hess, F. W. Campbell, and T. Greenhalgh, "On the nature of the neural abnormality in human amblyopia; neural aberrations and neural sensitivity loss," Pfluegers Arch. Eur. J. Physiol. 377, 201-207 (1978).

Spatial Vis. (2)

D. H. Brainard, "The Psychophysics Toolbox," Spatial Vis. 10, 433-436 (1997).
[CrossRef]

D. G. Pelli, "The Video Toolbox software for visual psychophysics: transforming numbers into movies," Spatial Vis. 10, 437-442 (1997).
[CrossRef]

Strabismus (1)

L. Kiorpes, "Visual processing in amblyopia: animal studies," Strabismus 14, 3-10 (2006).
[CrossRef] [PubMed]

Vision Res. (8)

R. Demanins, R. F. Hess, C. B. Williams, and D. R. Keeble, "The orientation discrimination deficit in strabismic amblyopia depends upon stimulus bandwidth," Vision Res. 39, 4018-4031 (1999).
[CrossRef]

D. G. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

R. F. Hess and E. R. Howell, "The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification," Vision Res. 17, 1049-1055 (1977).
[CrossRef] [PubMed]

R. F. Hess, T. Ledgeway, and S. Dakin, "Impoverished second-order input to global linking in human vision," Vision Res. 40, 3309-3318 (2000).
[CrossRef] [PubMed]

A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, "Deficits to global motion processing in human amblyopia," Vision Res. 43, 729-738 (2003).
[CrossRef] [PubMed]

A. J. Simmers, T. Ledgeway, and R. F. Hess, "The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia," Vision Res. 45, 449-460 (2005).
[CrossRef]

B. Mansouri and R. F. Hess, "The global processing deficit in amblyopia involves noise segregation," Vision Res. 46, 4104-4117 (2006).
[CrossRef] [PubMed]

B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
[CrossRef] [PubMed]

Other (2)

D. Regan, Human Perception of Objects (Sinauer Associates Inc., 2000).

J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome, "The analysis of moving visual patterns," in Pattern Recognition Mechanisms, C.Chagas, R.Gattass, and C.Gross, eds. (Vatican Press, 1985), pp. 117-151.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Examples of stimuli: Arrays of 16 randomly placed and oriented Gabor elements (I–P) were used. Each Gabor is a sample from a Gaussian distribution (A–H), where the average orientations of the distributions were chosen randomly from trial to trial. Eight different pedestal variances were tested ( 1 ° 784 ° ) .

Fig. 2
Fig. 2

Equating performance for single elements. Orientation discrimination thresholds measured as a function of contrast for a single Gabor element. The results are shown for one amblyopic observer in whom the performance of the amblyopic eye (AME) is fixed at a high contrast (75%) and the performance of the fellow fixing eye (FFE) is measured as a function of contrast. In this case, to equate performance for the AME viewing a 75% contrast stimulus, we used a 7% contrast stimulus for the FFE. Error bars, 95% confidence intervals (CIs).

Fig. 3
Fig. 3

Matched contrasts used for the FFEs of amblyopic observers for low- and high-spatial-frequency conditions. AMEs were always tested at 75% contrast. The thick dashed lined represents 25% contrast (used for normal observers).

Fig. 4
Fig. 4

Variance discrimination thresholds for amblyopic subjects (dashed curve and open squares for FFEs, and solid curve and closed squares for AMEs) and normal subjects [closed circles and dashed curve for dominant eyes (DEs) and open circles and solid curve for nondominant eyes (NDEs)] for low-spatial-frequency condition. Error bars represent ± 0.5 standard deviations. The performances of the four AME, FFE, DE, and NDE are similar across various variances. The horizontal dashed line represents the results from an ideal observer.

Fig. 5
Fig. 5

Highest spatial frequencies used for amblyopic observers in experiment 2. We tested the AME and FFE of each amblyopic observer at the same spatial frequency. On average the highest spatial frequency at which the amblyopic observers could perform the task was smaller than that of the normal observers. The thick dashed line represents the average spatial frequencies (SF) used for normal observers.

Fig. 6
Fig. 6

Variance discrimination thresholds for amblyopic subjects (dashed curve and open squares for FFEs, and solid curve and closed squares for AMEs) and normal subjects [closed circles and dashed curve for DEs and open circle and solid curve for NDEs] for the high-spatial-frequency condition. Error bars represent ± 0.5 standard deviations. The thresholds for AME and FFE are slightly higher, especially at low variances. However, the differences are not statistically significant.

Tables (1)

Tables Icon

Table 1 Clinical Details of Amblyopic Observers Participating in the Experiment a

Metrics