Abstract

A nematic liquid crystal spatial light modulator used as a phase-modulating device and operating in the reflective mode is analyzed using three-dimensional modeling. Two configurations, which differ in their electrode placement relative to a fixed quarter-wave plate, are considered across a range of steering directions, with the grating conformal and in some cases oblique to the pixel grid. For each steering direction the sensitivity of the diffraction orders to the polarization state of the incident wavefront is studied. Optimal alignment of the liquid crystal is suggested to reduce this sensitivity.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. McManamon, E. A. Watson, T. A. Dorschner, and L. J. Barnes, "Applications look at the use of liquid crystal writable gratings for steering passive radiation," Opt. Eng. 32, 2657-2664 (1993).
    [Crossref]
  2. C. M. Titus, J. R. Kelly, E. C. Gartland, S. V. Shiyanovskii, J. Anderson, and P. J. Bos, "Asymmetric transmissive behavior of liquid-crystal diffraction gratings," Opt. Lett. 26, 1188-1190 (2001).
    [Crossref]
  3. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, "Liquid-crystal blazed-grating beam deflector," Appl. Opt. 39, 6545-6555 (2000).
    [Crossref]
  4. I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, "Reconfigurable multilevel phase holograms for optical switches," IEEE Photon. Technol. Lett. 14, 801-803 (2002).
    [Crossref]
  5. K. L. Tan, S. T. Warr, I. G. Manolis, T. D. Wilkinson, M. M. Redmond, W. A. Crossland, R. J. Mears, and B. Robertson, "Dynamic holography for optical interconnections. II. Routing holograms with predictable location and intensity of each diffraction order," J. Opt. Soc. Am. A 18, 205-215 (2001).
    [Crossref]
  6. A. Tan, A. Bakoba, N. Wolffer, B. Vinouze, and P. Gravey, "Improvement of response time of electrically addressed nematic crystal blazed gratings," Proc. SPIE 4089, 208-218 (2000).
    [Crossref]
  7. A. Kali, A. Tan, P. Gravey, N. Wolffer, A. Lelah, and E. Pincemin, "Assessment of LCOS technology for the realization of scalable N×N optical switches," in Proceedings of Photonics in Switching, Versailles, 2003 (Société de l'Electricité de l'electronique et de Technologies de l'Information et de la Communication, 2003), pp. 262-264.
  8. S. Ahderom, M. Raisi, K. Alameh, and K. Eshraghian, "Dynamic WDM equalizer using opto-VLSI beam processing," IEEE Photon. Technol. Lett. 15, 1603-1605 (2003).
    [Crossref]
  9. M. Aljada, K. Alameh, Y.-T. Lee, and I.-S. Chung, "High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors," Opt. Express 14, 6823-6836 (2006).
    [Crossref] [PubMed]
  10. M. Komarcevic, I. G. Manolis, T. D. Wilkinson, and W. A. Crossland, "Polarization effects in reconfigurable liquid crystal phase holograms," Opt. Commun. 244, 105-110 (2005).
    [Crossref]
  11. M. Bouvier and T. Scharf, "Analysis of nematic-liquid-crystal binary gratings with high spatial frequency," Opt. Eng. 39, 2129-2137 (2000).
    [Crossref]
  12. E. Hällstig, T. Martin, L. Sjöqvist, and M. Lindgren, "Polarization properties of a nematic liquid-crystal spatial light modulator for phase modulation," J. Opt. Soc. Am. A 22, 177-184 (2005).
    [Crossref]
  13. B. Apter, U. Efron, and E. Bahat-Treidel, "On the fringing-field effect in liquid-crystal beam-steering devices," Appl. Opt. 43, 11-19 (2004).
    [Crossref] [PubMed]
  14. C. V. Brown, E. E. Kriezis, and S. J. Elston, "Optical diffraction from a liquid crystal phase grating," J. Appl. Phys. 91, 3495-3500 (2002).
    [Crossref]
  15. R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of high resolution phase spatial light modulators," Mol. Cryst. Liq. Cryst. 422, 209-217 (2004).
    [Crossref]
  16. F. A. Fernández, S. E. Day, P. Trwoga, H. Deng, and R. James, "Three-dimensional dynamic modelling of liquidcrystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
    [Crossref]
  17. R. C. Jones, "New calculus for the treatment of optical systems. I. Description and discussion of the calculus," J. Opt. Soc. Am. 31, 488-493 (1941).
    [Crossref]
  18. D. W. Berreman, "Optics in stratified and anisotropic media: 4×4-matrix formulation," J. Opt. Soc. Am. 62, 502-510 (1972).
    [Crossref]
  19. A. J. Davidson and S. J. Elston, "Three-dimensional beam propagation model for the optical path of light through a nematic liquid crystal," J. Mod. Opt. 53, 979-989 (2006).
    [Crossref]
  20. K. Rokushima and J. Yamakita, "Analysis of anisotropic dielectric gratings," J. Opt. Soc. Am. 73, 901-908 (1983).
    [Crossref]
  21. O. A. Peverini, D. Olivero, C. Oldano, D. K. G. de Boer, R. Cortie, R. Orta, and R. Tascone, "Reduced-order model technique for the analysis of anisotropic inhomogeneous media: application to liquid-crystal displays," J. Opt. Soc. Am. A 19, 1901-1909 (2002).
    [Crossref]
  22. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).
  23. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501 (2005).
    [Crossref]
  24. C. Desimpel, "Liquid crystal devices with in-plane director rotation," Ph.D. thesis (Ghent University, 2006).
  25. C. Desimpel, J. Beeckman, H. Desmet, K. Neyts, R. James, and F. A. Fernández, "A four-electrode liquid crystal device for 2pi in-plane director rotation," J. Phys. D 38, 3976-3984 (2005).
    [Crossref]
  26. J. A. Dobrowolski, L. Li, and J. N. Hilfiker, "Long-wavelength cutoff filters of a new type," Appl. Opt. 38, 4891-4903 (1999).
    [Crossref]
  27. W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, "InGaAs metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts," Appl. Phys. Lett. 65, 1930-1932 (1994).
    [Crossref]
  28. S. Laux, N. Kaiser, A. Zoller, R. Gotzelmann, H. Lauth, and H. Bernitzki, "Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation," Thin Solid Films 335, 1-5 (1998).
    [Crossref]
  29. J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, "Zinc-indium-oxide: a high conductivity transparent conducting oxide," Appl. Phys. Lett. 67, 2246-2248 (1995).
    [Crossref]
  30. B. Chiou and J. Tsai, "Antireflective coating for ITO films deposited on glass substrate," J. Mater. Sci. 10, 491-495 (1999).
  31. M. Komarcevic, W. A. Crossland, T. D. Wilkinson, R. James, F. A. Fernández, and S. E. Day, "Framework for direct numerical optimization of liquid crystal blazed gratings," submitted to J. Opt. Soc. Am. A.

2006 (2)

M. Aljada, K. Alameh, Y.-T. Lee, and I.-S. Chung, "High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors," Opt. Express 14, 6823-6836 (2006).
[Crossref] [PubMed]

A. J. Davidson and S. J. Elston, "Three-dimensional beam propagation model for the optical path of light through a nematic liquid crystal," J. Mod. Opt. 53, 979-989 (2006).
[Crossref]

2005 (4)

E. Hällstig, T. Martin, L. Sjöqvist, and M. Lindgren, "Polarization properties of a nematic liquid-crystal spatial light modulator for phase modulation," J. Opt. Soc. Am. A 22, 177-184 (2005).
[Crossref]

M. Komarcevic, I. G. Manolis, T. D. Wilkinson, and W. A. Crossland, "Polarization effects in reconfigurable liquid crystal phase holograms," Opt. Commun. 244, 105-110 (2005).
[Crossref]

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501 (2005).
[Crossref]

C. Desimpel, J. Beeckman, H. Desmet, K. Neyts, R. James, and F. A. Fernández, "A four-electrode liquid crystal device for 2pi in-plane director rotation," J. Phys. D 38, 3976-3984 (2005).
[Crossref]

2004 (2)

B. Apter, U. Efron, and E. Bahat-Treidel, "On the fringing-field effect in liquid-crystal beam-steering devices," Appl. Opt. 43, 11-19 (2004).
[Crossref] [PubMed]

R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of high resolution phase spatial light modulators," Mol. Cryst. Liq. Cryst. 422, 209-217 (2004).
[Crossref]

2003 (1)

S. Ahderom, M. Raisi, K. Alameh, and K. Eshraghian, "Dynamic WDM equalizer using opto-VLSI beam processing," IEEE Photon. Technol. Lett. 15, 1603-1605 (2003).
[Crossref]

2002 (4)

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, "Reconfigurable multilevel phase holograms for optical switches," IEEE Photon. Technol. Lett. 14, 801-803 (2002).
[Crossref]

F. A. Fernández, S. E. Day, P. Trwoga, H. Deng, and R. James, "Three-dimensional dynamic modelling of liquidcrystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
[Crossref]

C. V. Brown, E. E. Kriezis, and S. J. Elston, "Optical diffraction from a liquid crystal phase grating," J. Appl. Phys. 91, 3495-3500 (2002).
[Crossref]

O. A. Peverini, D. Olivero, C. Oldano, D. K. G. de Boer, R. Cortie, R. Orta, and R. Tascone, "Reduced-order model technique for the analysis of anisotropic inhomogeneous media: application to liquid-crystal displays," J. Opt. Soc. Am. A 19, 1901-1909 (2002).
[Crossref]

2001 (2)

2000 (3)

X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, "Liquid-crystal blazed-grating beam deflector," Appl. Opt. 39, 6545-6555 (2000).
[Crossref]

A. Tan, A. Bakoba, N. Wolffer, B. Vinouze, and P. Gravey, "Improvement of response time of electrically addressed nematic crystal blazed gratings," Proc. SPIE 4089, 208-218 (2000).
[Crossref]

M. Bouvier and T. Scharf, "Analysis of nematic-liquid-crystal binary gratings with high spatial frequency," Opt. Eng. 39, 2129-2137 (2000).
[Crossref]

1999 (2)

J. A. Dobrowolski, L. Li, and J. N. Hilfiker, "Long-wavelength cutoff filters of a new type," Appl. Opt. 38, 4891-4903 (1999).
[Crossref]

B. Chiou and J. Tsai, "Antireflective coating for ITO films deposited on glass substrate," J. Mater. Sci. 10, 491-495 (1999).

1998 (1)

S. Laux, N. Kaiser, A. Zoller, R. Gotzelmann, H. Lauth, and H. Bernitzki, "Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation," Thin Solid Films 335, 1-5 (1998).
[Crossref]

1995 (1)

J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, "Zinc-indium-oxide: a high conductivity transparent conducting oxide," Appl. Phys. Lett. 67, 2246-2248 (1995).
[Crossref]

1994 (1)

W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, "InGaAs metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts," Appl. Phys. Lett. 65, 1930-1932 (1994).
[Crossref]

1993 (1)

P. F. McManamon, E. A. Watson, T. A. Dorschner, and L. J. Barnes, "Applications look at the use of liquid crystal writable gratings for steering passive radiation," Opt. Eng. 32, 2657-2664 (1993).
[Crossref]

1983 (1)

1972 (1)

1941 (1)

Ahderom, S.

S. Ahderom, M. Raisi, K. Alameh, and K. Eshraghian, "Dynamic WDM equalizer using opto-VLSI beam processing," IEEE Photon. Technol. Lett. 15, 1603-1605 (2003).
[Crossref]

Alameh, K.

M. Aljada, K. Alameh, Y.-T. Lee, and I.-S. Chung, "High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors," Opt. Express 14, 6823-6836 (2006).
[Crossref] [PubMed]

S. Ahderom, M. Raisi, K. Alameh, and K. Eshraghian, "Dynamic WDM equalizer using opto-VLSI beam processing," IEEE Photon. Technol. Lett. 15, 1603-1605 (2003).
[Crossref]

Aljada, M.

Anderson, J.

Apter, B.

Bahat-Treidel, E.

Bakoba, A.

A. Tan, A. Bakoba, N. Wolffer, B. Vinouze, and P. Gravey, "Improvement of response time of electrically addressed nematic crystal blazed gratings," Proc. SPIE 4089, 208-218 (2000).
[Crossref]

Barnes, L. J.

P. F. McManamon, E. A. Watson, T. A. Dorschner, and L. J. Barnes, "Applications look at the use of liquid crystal writable gratings for steering passive radiation," Opt. Eng. 32, 2657-2664 (1993).
[Crossref]

Beeckman, J.

C. Desimpel, J. Beeckman, H. Desmet, K. Neyts, R. James, and F. A. Fernández, "A four-electrode liquid crystal device for 2pi in-plane director rotation," J. Phys. D 38, 3976-3984 (2005).
[Crossref]

Berger, P. R.

W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, "InGaAs metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts," Appl. Phys. Lett. 65, 1930-1932 (1994).
[Crossref]

Bernitzki, H.

S. Laux, N. Kaiser, A. Zoller, R. Gotzelmann, H. Lauth, and H. Bernitzki, "Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation," Thin Solid Films 335, 1-5 (1998).
[Crossref]

Berreman, D. W.

Bos, P. J.

Bouvier, M.

M. Bouvier and T. Scharf, "Analysis of nematic-liquid-crystal binary gratings with high spatial frequency," Opt. Eng. 39, 2129-2137 (2000).
[Crossref]

Brown, C. V.

C. V. Brown, E. E. Kriezis, and S. J. Elston, "Optical diffraction from a liquid crystal phase grating," J. Appl. Phys. 91, 3495-3500 (2002).
[Crossref]

Brugioni, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Carter, S. A.

J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, "Zinc-indium-oxide: a high conductivity transparent conducting oxide," Appl. Phys. Lett. 67, 2246-2248 (1995).
[Crossref]

Cava, R. J.

J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, "Zinc-indium-oxide: a high conductivity transparent conducting oxide," Appl. Phys. Lett. 67, 2246-2248 (1995).
[Crossref]

Chiou, B.

B. Chiou and J. Tsai, "Antireflective coating for ITO films deposited on glass substrate," J. Mater. Sci. 10, 491-495 (1999).

Cho, A. Y.

W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, "InGaAs metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts," Appl. Phys. Lett. 65, 1930-1932 (1994).
[Crossref]

Chung, I.-S.

Cortie, R.

Crossland, W. A.

M. Komarcevic, I. G. Manolis, T. D. Wilkinson, and W. A. Crossland, "Polarization effects in reconfigurable liquid crystal phase holograms," Opt. Commun. 244, 105-110 (2005).
[Crossref]

R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of high resolution phase spatial light modulators," Mol. Cryst. Liq. Cryst. 422, 209-217 (2004).
[Crossref]

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, "Reconfigurable multilevel phase holograms for optical switches," IEEE Photon. Technol. Lett. 14, 801-803 (2002).
[Crossref]

K. L. Tan, S. T. Warr, I. G. Manolis, T. D. Wilkinson, M. M. Redmond, W. A. Crossland, R. J. Mears, and B. Robertson, "Dynamic holography for optical interconnections. II. Routing holograms with predictable location and intensity of each diffraction order," J. Opt. Soc. Am. A 18, 205-215 (2001).
[Crossref]

M. Komarcevic, W. A. Crossland, T. D. Wilkinson, R. James, F. A. Fernández, and S. E. Day, "Framework for direct numerical optimization of liquid crystal blazed gratings," submitted to J. Opt. Soc. Am. A.

Davidson, A. J.

A. J. Davidson and S. J. Elston, "Three-dimensional beam propagation model for the optical path of light through a nematic liquid crystal," J. Mod. Opt. 53, 979-989 (2006).
[Crossref]

Day, S. E.

R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of high resolution phase spatial light modulators," Mol. Cryst. Liq. Cryst. 422, 209-217 (2004).
[Crossref]

F. A. Fernández, S. E. Day, P. Trwoga, H. Deng, and R. James, "Three-dimensional dynamic modelling of liquidcrystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
[Crossref]

M. Komarcevic, W. A. Crossland, T. D. Wilkinson, R. James, F. A. Fernández, and S. E. Day, "Framework for direct numerical optimization of liquid crystal blazed gratings," submitted to J. Opt. Soc. Am. A.

de Boer, D. K. G.

de Gennes, P. G.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).

Deng, H.

F. A. Fernández, S. E. Day, P. Trwoga, H. Deng, and R. James, "Three-dimensional dynamic modelling of liquidcrystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
[Crossref]

Desimpel, C.

C. Desimpel, J. Beeckman, H. Desmet, K. Neyts, R. James, and F. A. Fernández, "A four-electrode liquid crystal device for 2pi in-plane director rotation," J. Phys. D 38, 3976-3984 (2005).
[Crossref]

C. Desimpel, "Liquid crystal devices with in-plane director rotation," Ph.D. thesis (Ghent University, 2006).

Desmet, H.

C. Desimpel, J. Beeckman, H. Desmet, K. Neyts, R. James, and F. A. Fernández, "A four-electrode liquid crystal device for 2pi in-plane director rotation," J. Phys. D 38, 3976-3984 (2005).
[Crossref]

Dobrowolski, J. A.

Dorschner, T. A.

P. F. McManamon, E. A. Watson, T. A. Dorschner, and L. J. Barnes, "Applications look at the use of liquid crystal writable gratings for steering passive radiation," Opt. Eng. 32, 2657-2664 (1993).
[Crossref]

Efron, U.

Elston, S. J.

A. J. Davidson and S. J. Elston, "Three-dimensional beam propagation model for the optical path of light through a nematic liquid crystal," J. Mod. Opt. 53, 979-989 (2006).
[Crossref]

C. V. Brown, E. E. Kriezis, and S. J. Elston, "Optical diffraction from a liquid crystal phase grating," J. Appl. Phys. 91, 3495-3500 (2002).
[Crossref]

Eshraghian, K.

S. Ahderom, M. Raisi, K. Alameh, and K. Eshraghian, "Dynamic WDM equalizer using opto-VLSI beam processing," IEEE Photon. Technol. Lett. 15, 1603-1605 (2003).
[Crossref]

Faetti, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Fernández, F. A.

C. Desimpel, J. Beeckman, H. Desmet, K. Neyts, R. James, and F. A. Fernández, "A four-electrode liquid crystal device for 2pi in-plane director rotation," J. Phys. D 38, 3976-3984 (2005).
[Crossref]

R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of high resolution phase spatial light modulators," Mol. Cryst. Liq. Cryst. 422, 209-217 (2004).
[Crossref]

F. A. Fernández, S. E. Day, P. Trwoga, H. Deng, and R. James, "Three-dimensional dynamic modelling of liquidcrystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
[Crossref]

M. Komarcevic, W. A. Crossland, T. D. Wilkinson, R. James, F. A. Fernández, and S. E. Day, "Framework for direct numerical optimization of liquid crystal blazed gratings," submitted to J. Opt. Soc. Am. A.

Gao, W.

W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, "InGaAs metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts," Appl. Phys. Lett. 65, 1930-1932 (1994).
[Crossref]

Gartland, E. C.

Gotzelmann, R.

S. Laux, N. Kaiser, A. Zoller, R. Gotzelmann, H. Lauth, and H. Bernitzki, "Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation," Thin Solid Films 335, 1-5 (1998).
[Crossref]

Gravey, P.

A. Tan, A. Bakoba, N. Wolffer, B. Vinouze, and P. Gravey, "Improvement of response time of electrically addressed nematic crystal blazed gratings," Proc. SPIE 4089, 208-218 (2000).
[Crossref]

A. Kali, A. Tan, P. Gravey, N. Wolffer, A. Lelah, and E. Pincemin, "Assessment of LCOS technology for the realization of scalable N×N optical switches," in Proceedings of Photonics in Switching, Versailles, 2003 (Société de l'Electricité de l'electronique et de Technologies de l'Information et de la Communication, 2003), pp. 262-264.

Hällstig, E.

Hilfiker, J. N.

Hunsperger, R. G.

W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, "InGaAs metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts," Appl. Phys. Lett. 65, 1930-1932 (1994).
[Crossref]

James, R.

C. Desimpel, J. Beeckman, H. Desmet, K. Neyts, R. James, and F. A. Fernández, "A four-electrode liquid crystal device for 2pi in-plane director rotation," J. Phys. D 38, 3976-3984 (2005).
[Crossref]

R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of high resolution phase spatial light modulators," Mol. Cryst. Liq. Cryst. 422, 209-217 (2004).
[Crossref]

F. A. Fernández, S. E. Day, P. Trwoga, H. Deng, and R. James, "Three-dimensional dynamic modelling of liquidcrystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
[Crossref]

M. Komarcevic, W. A. Crossland, T. D. Wilkinson, R. James, F. A. Fernández, and S. E. Day, "Framework for direct numerical optimization of liquid crystal blazed gratings," submitted to J. Opt. Soc. Am. A.

Jones, R. C.

Kaiser, N.

S. Laux, N. Kaiser, A. Zoller, R. Gotzelmann, H. Lauth, and H. Bernitzki, "Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation," Thin Solid Films 335, 1-5 (1998).
[Crossref]

Kali, A.

A. Kali, A. Tan, P. Gravey, N. Wolffer, A. Lelah, and E. Pincemin, "Assessment of LCOS technology for the realization of scalable N×N optical switches," in Proceedings of Photonics in Switching, Versailles, 2003 (Société de l'Electricité de l'electronique et de Technologies de l'Information et de la Communication, 2003), pp. 262-264.

Kelly, J. R.

Khan, A.

W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, "InGaAs metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts," Appl. Phys. Lett. 65, 1930-1932 (1994).
[Crossref]

Komarcevic, M.

M. Komarcevic, I. G. Manolis, T. D. Wilkinson, and W. A. Crossland, "Polarization effects in reconfigurable liquid crystal phase holograms," Opt. Commun. 244, 105-110 (2005).
[Crossref]

R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of high resolution phase spatial light modulators," Mol. Cryst. Liq. Cryst. 422, 209-217 (2004).
[Crossref]

M. Komarcevic, W. A. Crossland, T. D. Wilkinson, R. James, F. A. Fernández, and S. E. Day, "Framework for direct numerical optimization of liquid crystal blazed gratings," submitted to J. Opt. Soc. Am. A.

Krajewski, J. J.

J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, "Zinc-indium-oxide: a high conductivity transparent conducting oxide," Appl. Phys. Lett. 67, 2246-2248 (1995).
[Crossref]

Kriezis, E. E.

C. V. Brown, E. E. Kriezis, and S. J. Elston, "Optical diffraction from a liquid crystal phase grating," J. Appl. Phys. 91, 3495-3500 (2002).
[Crossref]

Kwo, J.

J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, "Zinc-indium-oxide: a high conductivity transparent conducting oxide," Appl. Phys. Lett. 67, 2246-2248 (1995).
[Crossref]

Lauth, H.

S. Laux, N. Kaiser, A. Zoller, R. Gotzelmann, H. Lauth, and H. Bernitzki, "Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation," Thin Solid Films 335, 1-5 (1998).
[Crossref]

Laux, S.

S. Laux, N. Kaiser, A. Zoller, R. Gotzelmann, H. Lauth, and H. Bernitzki, "Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation," Thin Solid Films 335, 1-5 (1998).
[Crossref]

Lee, Y.-T.

Lelah, A.

A. Kali, A. Tan, P. Gravey, N. Wolffer, A. Lelah, and E. Pincemin, "Assessment of LCOS technology for the realization of scalable N×N optical switches," in Proceedings of Photonics in Switching, Versailles, 2003 (Société de l'Electricité de l'electronique et de Technologies de l'Information et de la Communication, 2003), pp. 262-264.

Li, J.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Li, L.

Lindgren, M.

Maker, P.

Manolis, I. G.

M. Komarcevic, I. G. Manolis, T. D. Wilkinson, and W. A. Crossland, "Polarization effects in reconfigurable liquid crystal phase holograms," Opt. Commun. 244, 105-110 (2005).
[Crossref]

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, "Reconfigurable multilevel phase holograms for optical switches," IEEE Photon. Technol. Lett. 14, 801-803 (2002).
[Crossref]

K. L. Tan, S. T. Warr, I. G. Manolis, T. D. Wilkinson, M. M. Redmond, W. A. Crossland, R. J. Mears, and B. Robertson, "Dynamic holography for optical interconnections. II. Routing holograms with predictable location and intensity of each diffraction order," J. Opt. Soc. Am. A 18, 205-215 (2001).
[Crossref]

Marshall, J. H.

J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, "Zinc-indium-oxide: a high conductivity transparent conducting oxide," Appl. Phys. Lett. 67, 2246-2248 (1995).
[Crossref]

Martin, T.

McManamon, P. F.

P. F. McManamon, E. A. Watson, T. A. Dorschner, and L. J. Barnes, "Applications look at the use of liquid crystal writable gratings for steering passive radiation," Opt. Eng. 32, 2657-2664 (1993).
[Crossref]

Mears, R. J.

Meucci, R.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Muller, R.

Neyts, K.

C. Desimpel, J. Beeckman, H. Desmet, K. Neyts, R. James, and F. A. Fernández, "A four-electrode liquid crystal device for 2pi in-plane director rotation," J. Phys. D 38, 3976-3984 (2005).
[Crossref]

O'Bryan, H. M.

W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, "InGaAs metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts," Appl. Phys. Lett. 65, 1930-1932 (1994).
[Crossref]

Oldano, C.

Olivero, D.

Orta, R.

Peck, W. F.

J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, "Zinc-indium-oxide: a high conductivity transparent conducting oxide," Appl. Phys. Lett. 67, 2246-2248 (1995).
[Crossref]

Peverini, O. A.

Phillips, J. M.

J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, "Zinc-indium-oxide: a high conductivity transparent conducting oxide," Appl. Phys. Lett. 67, 2246-2248 (1995).
[Crossref]

Pincemin, E.

A. Kali, A. Tan, P. Gravey, N. Wolffer, A. Lelah, and E. Pincemin, "Assessment of LCOS technology for the realization of scalable N×N optical switches," in Proceedings of Photonics in Switching, Versailles, 2003 (Société de l'Electricité de l'electronique et de Technologies de l'Information et de la Communication, 2003), pp. 262-264.

Prost, J.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).

Psaltis, D.

Raisi, M.

S. Ahderom, M. Raisi, K. Alameh, and K. Eshraghian, "Dynamic WDM equalizer using opto-VLSI beam processing," IEEE Photon. Technol. Lett. 15, 1603-1605 (2003).
[Crossref]

Rapkine, D. H.

J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, "Zinc-indium-oxide: a high conductivity transparent conducting oxide," Appl. Phys. Lett. 67, 2246-2248 (1995).
[Crossref]

Redmond, M. M.

Robertson, B.

Rokushima, K.

Scharf, T.

M. Bouvier and T. Scharf, "Analysis of nematic-liquid-crystal binary gratings with high spatial frequency," Opt. Eng. 39, 2129-2137 (2000).
[Crossref]

Shiyanovskii, S. V.

Siegrist, T.

J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, "Zinc-indium-oxide: a high conductivity transparent conducting oxide," Appl. Phys. Lett. 67, 2246-2248 (1995).
[Crossref]

Sivco, D.

W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, "InGaAs metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts," Appl. Phys. Lett. 65, 1930-1932 (1994).
[Crossref]

Sjöqvist, L.

Tan, A.

A. Tan, A. Bakoba, N. Wolffer, B. Vinouze, and P. Gravey, "Improvement of response time of electrically addressed nematic crystal blazed gratings," Proc. SPIE 4089, 208-218 (2000).
[Crossref]

A. Kali, A. Tan, P. Gravey, N. Wolffer, A. Lelah, and E. Pincemin, "Assessment of LCOS technology for the realization of scalable N×N optical switches," in Proceedings of Photonics in Switching, Versailles, 2003 (Société de l'Electricité de l'electronique et de Technologies de l'Information et de la Communication, 2003), pp. 262-264.

Tan, K. L.

Tascone, R.

Thomas, G. A.

J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, "Zinc-indium-oxide: a high conductivity transparent conducting oxide," Appl. Phys. Lett. 67, 2246-2248 (1995).
[Crossref]

Titus, C. M.

Trwoga, P.

F. A. Fernández, S. E. Day, P. Trwoga, H. Deng, and R. James, "Three-dimensional dynamic modelling of liquidcrystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
[Crossref]

Tsai, J.

B. Chiou and J. Tsai, "Antireflective coating for ITO films deposited on glass substrate," J. Mater. Sci. 10, 491-495 (1999).

Vinouze, B.

A. Tan, A. Bakoba, N. Wolffer, B. Vinouze, and P. Gravey, "Improvement of response time of electrically addressed nematic crystal blazed gratings," Proc. SPIE 4089, 208-218 (2000).
[Crossref]

Wang, X.

Warr, S. T.

Watson, E. A.

P. F. McManamon, E. A. Watson, T. A. Dorschner, and L. J. Barnes, "Applications look at the use of liquid crystal writable gratings for steering passive radiation," Opt. Eng. 32, 2657-2664 (1993).
[Crossref]

Wilkinson, T. D.

M. Komarcevic, I. G. Manolis, T. D. Wilkinson, and W. A. Crossland, "Polarization effects in reconfigurable liquid crystal phase holograms," Opt. Commun. 244, 105-110 (2005).
[Crossref]

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, "Reconfigurable multilevel phase holograms for optical switches," IEEE Photon. Technol. Lett. 14, 801-803 (2002).
[Crossref]

K. L. Tan, S. T. Warr, I. G. Manolis, T. D. Wilkinson, M. M. Redmond, W. A. Crossland, R. J. Mears, and B. Robertson, "Dynamic holography for optical interconnections. II. Routing holograms with predictable location and intensity of each diffraction order," J. Opt. Soc. Am. A 18, 205-215 (2001).
[Crossref]

M. Komarcevic, W. A. Crossland, T. D. Wilkinson, R. James, F. A. Fernández, and S. E. Day, "Framework for direct numerical optimization of liquid crystal blazed gratings," submitted to J. Opt. Soc. Am. A.

Wilson, D.

Wolffer, N.

A. Tan, A. Bakoba, N. Wolffer, B. Vinouze, and P. Gravey, "Improvement of response time of electrically addressed nematic crystal blazed gratings," Proc. SPIE 4089, 208-218 (2000).
[Crossref]

A. Kali, A. Tan, P. Gravey, N. Wolffer, A. Lelah, and E. Pincemin, "Assessment of LCOS technology for the realization of scalable N×N optical switches," in Proceedings of Photonics in Switching, Versailles, 2003 (Société de l'Electricité de l'electronique et de Technologies de l'Information et de la Communication, 2003), pp. 262-264.

Wu, S.-T.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Yamakita, J.

Zoller, A.

S. Laux, N. Kaiser, A. Zoller, R. Gotzelmann, H. Lauth, and H. Bernitzki, "Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation," Thin Solid Films 335, 1-5 (1998).
[Crossref]

Zydzik, G.

W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, "InGaAs metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts," Appl. Phys. Lett. 65, 1930-1932 (1994).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, "InGaAs metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts," Appl. Phys. Lett. 65, 1930-1932 (1994).
[Crossref]

J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, "Zinc-indium-oxide: a high conductivity transparent conducting oxide," Appl. Phys. Lett. 67, 2246-2248 (1995).
[Crossref]

IEEE Photon. Technol. Lett. (2)

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, "Reconfigurable multilevel phase holograms for optical switches," IEEE Photon. Technol. Lett. 14, 801-803 (2002).
[Crossref]

S. Ahderom, M. Raisi, K. Alameh, and K. Eshraghian, "Dynamic WDM equalizer using opto-VLSI beam processing," IEEE Photon. Technol. Lett. 15, 1603-1605 (2003).
[Crossref]

J. Appl. Phys. (2)

C. V. Brown, E. E. Kriezis, and S. J. Elston, "Optical diffraction from a liquid crystal phase grating," J. Appl. Phys. 91, 3495-3500 (2002).
[Crossref]

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501 (2005).
[Crossref]

J. Mater. Sci. (1)

B. Chiou and J. Tsai, "Antireflective coating for ITO films deposited on glass substrate," J. Mater. Sci. 10, 491-495 (1999).

J. Mod. Opt. (1)

A. J. Davidson and S. J. Elston, "Three-dimensional beam propagation model for the optical path of light through a nematic liquid crystal," J. Mod. Opt. 53, 979-989 (2006).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (3)

J. Phys. D (1)

C. Desimpel, J. Beeckman, H. Desmet, K. Neyts, R. James, and F. A. Fernández, "A four-electrode liquid crystal device for 2pi in-plane director rotation," J. Phys. D 38, 3976-3984 (2005).
[Crossref]

Mol. Cryst. Liq. Cryst. (2)

R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of high resolution phase spatial light modulators," Mol. Cryst. Liq. Cryst. 422, 209-217 (2004).
[Crossref]

F. A. Fernández, S. E. Day, P. Trwoga, H. Deng, and R. James, "Three-dimensional dynamic modelling of liquidcrystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
[Crossref]

Opt. Commun. (1)

M. Komarcevic, I. G. Manolis, T. D. Wilkinson, and W. A. Crossland, "Polarization effects in reconfigurable liquid crystal phase holograms," Opt. Commun. 244, 105-110 (2005).
[Crossref]

Opt. Eng. (2)

M. Bouvier and T. Scharf, "Analysis of nematic-liquid-crystal binary gratings with high spatial frequency," Opt. Eng. 39, 2129-2137 (2000).
[Crossref]

P. F. McManamon, E. A. Watson, T. A. Dorschner, and L. J. Barnes, "Applications look at the use of liquid crystal writable gratings for steering passive radiation," Opt. Eng. 32, 2657-2664 (1993).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

A. Tan, A. Bakoba, N. Wolffer, B. Vinouze, and P. Gravey, "Improvement of response time of electrically addressed nematic crystal blazed gratings," Proc. SPIE 4089, 208-218 (2000).
[Crossref]

Thin Solid Films (1)

S. Laux, N. Kaiser, A. Zoller, R. Gotzelmann, H. Lauth, and H. Bernitzki, "Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation," Thin Solid Films 335, 1-5 (1998).
[Crossref]

Other (4)

M. Komarcevic, W. A. Crossland, T. D. Wilkinson, R. James, F. A. Fernández, and S. E. Day, "Framework for direct numerical optimization of liquid crystal blazed gratings," submitted to J. Opt. Soc. Am. A.

C. Desimpel, "Liquid crystal devices with in-plane director rotation," Ph.D. thesis (Ghent University, 2006).

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).

A. Kali, A. Tan, P. Gravey, N. Wolffer, A. Lelah, and E. Pincemin, "Assessment of LCOS technology for the realization of scalable N×N optical switches," in Proceedings of Photonics in Switching, Versailles, 2003 (Société de l'Electricité de l'electronique et de Technologies de l'Information et de la Communication, 2003), pp. 262-264.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

SLM configurations (a) with the electrodes forming the reflector and (b) with electrodes positioned between the LC and the QWP. Electrode color represents the voltage for a grating oblique to the pixel grid.

Fig. 2
Fig. 2

Pixel array voltage pattern at each grating angle. Two possible alignments are considered: ( i ) conformal (along x ̂ ) and (ii) ↗ at 45° [along ( x ̂ + y ̂ ) 2 ] to the pixel grid.

Fig. 3
Fig. 3

Voltage distributions on the alignment layer surface ( z = 0 ) .

Fig. 4
Fig. 4

Director field and equipotential contours with a grating angle of 0° and a 0° alignment for configuration (b), where the director color represents the tilt.

Fig. 5
Fig. 5

Optical phase of the dominant component of the outgoing wavefront with a grating angle of 0° and a 0° alignment.

Fig. 6
Fig. 6

Optical phase of the dominant component of the outgoing wavefront with a grating angle of 180° and a 0° alignment.

Fig. 7
Fig. 7

Optical reflectance, where a polarizer is oriented parallel to the alignment direction with a grating angle of 45° for configuration (a). Black represents the minimum reflectance of 0, and white represents the maximum, which is different in each case: (i) 1.263, (ii) 0.061. The maximum can exceed the incident power of 1.0 due to diffractive effects at the flyback. Electrode outlines are overlaid, with the low-voltage electrode centered at x + y = 49.5 μ m neighbored to the right by the high-voltage electrode.

Fig. 8
Fig. 8

+ 1 diffraction order magnitude as a function of grating angle for configuration (a). At each grating angle the minimum and maximum magnitudes of the diffraction order obtained by the linear input polarization states are indicated by markers. The vertical lines show the variation obtained by all the normalized polarization states, including linear, circular, and elliptical.

Fig. 9
Fig. 9

+ 1 diffraction order magnitude as a function of grating angle for configuration (b).

Fig. 10
Fig. 10

Maximum and minimum ellipticities of the + 1 diffraction order of the outgoing wavefront across all grating angles and polarization angles for (i) 0° alignment (solid curves) and (ii) 45° alignment (dashed curves) as the ellipticity of the incident wavefront (0 order) is altered.

Fig. 11
Fig. 11

Magnitude of the + 2 diffraction order as a function of grating angle.

Fig. 12
Fig. 12

Magnitude of the 0 diffraction order as a function of grating angle.

Fig. 13
Fig. 13

Maximum magnitude of each diffraction order taken by the complete set of incident polarization states and grating angles, both oblique and conformal to the pixel grid.

Fig. 14
Fig. 14

Magnitude of the + 1 diffraction order as the grating period is altered with the electrode size held constant for configuration (a). The grating angle is at 90°, and the alignment is at 0°.

Tables (4)

Tables Icon

Table 1 Material Properties (E7)

Tables Icon

Table 2 Effect of Deviations from the Ideal Blazed Grating Phase Response on the Far-Field Diffraction Pattern

Tables Icon

Table 3 Maximum, Average, and Minimum Diffraction Order Magnitudes (dB) for Configuration (a)

Tables Icon

Table 4 Maximum, Average, and Minimum Diffraction Order Magnitudes (dB) for Configuration (b)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f 1 2 K 11 ( n ̂ ) 2 + 1 2 K 22 ( n ̂ × n ̂ ) 2 + 1 2 K 33 n ̂ × × n ̂ 2 1 2 ε 0 ( E ε ̿ E ) ,
F n δ + n ̇ δ ( γ 2 Ω { n ̇ μ n ̇ μ } ) = 0 ,
J = Ω { u ε ̿ u } .
z ψ = i k 0 A ψ ,
E x = cos ( φ ) + i e sin ( φ ) 1 + e 2 , E y = sin ( φ ) + i e cos ( φ ) 1 + e 2 ,

Metrics