Abstract

The aberration characteristics of a wedge-plate display optical system are analyzed. The study shows that a kink-like feature is inherent in the ray-intercept curve due to either the onset of the dark zone in imaging or the coincidence of the ray direction with the vertex. Third-order aberration coefficients are deduced, and the total amount of aberration is investigated to illustrate the basic limitations of image quality in this type of display. The issue of design optimization is also investigated based on the aberration characteristics. A numerical example of a 50in. display with a 1:10 thickness and a diagonal screen length ratio is also provided.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Welford, Aberrations of Optical Systems (Adam Hilger, 1986).
  2. Y. Matsui and K. Nariai, Fundamentals of Practical Aberration Theory (World Scientific, 1993).
    [CrossRef]
  3. M. Laikin, Lens Design, 3rd ed. (Marcel Dekker, 1991), Chap. 26-27.
  4. E. H. Stupp and M. S. Brennesholtz, Projection Display (Wiley, 1999).
  5. A. Travis, T. Large, and M. Buckingham, "Image quality in flat projection wedges," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 35, 850-853 (2004).
    [CrossRef]
  6. A. Travis, J. Moore, and J. Zhong, "Optical design of a flat panel projection wedge display," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 33, 461-464 (2002).
  7. A. Travis and J. Zhong, "Linearity in flat panel wedge project," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 34, 716-719 (2003).
    [CrossRef]
  8. A. Travis, "The focal surface of a wedge projection display," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 36, 896-897 (2005).
    [CrossRef]
  9. A. Travis, "Flat-panel display using tapered waveguide," WIPO patent number 03/013151, 13 February 2003.
  10. D. Korsch, Reflective Optics (Academic, 1992), Chap. 10.
  11. Y.-K. Cheng and J.-L. Chern, "Analysis and reduction of dark zone in ultra-thin wedge plate display," J. Soc. Inf. Disp. 14, 813-818 (2006).
    [CrossRef]
  12. More information on TracePro can be found at http://www.lambdares.com.

2006 (1)

Y.-K. Cheng and J.-L. Chern, "Analysis and reduction of dark zone in ultra-thin wedge plate display," J. Soc. Inf. Disp. 14, 813-818 (2006).
[CrossRef]

2005 (1)

A. Travis, "The focal surface of a wedge projection display," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 36, 896-897 (2005).
[CrossRef]

2004 (1)

A. Travis, T. Large, and M. Buckingham, "Image quality in flat projection wedges," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 35, 850-853 (2004).
[CrossRef]

2003 (1)

A. Travis and J. Zhong, "Linearity in flat panel wedge project," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 34, 716-719 (2003).
[CrossRef]

2002 (1)

A. Travis, J. Moore, and J. Zhong, "Optical design of a flat panel projection wedge display," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 33, 461-464 (2002).

Brennesholtz, M. S.

E. H. Stupp and M. S. Brennesholtz, Projection Display (Wiley, 1999).

Buckingham, M.

A. Travis, T. Large, and M. Buckingham, "Image quality in flat projection wedges," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 35, 850-853 (2004).
[CrossRef]

Cheng, Y.-K.

Y.-K. Cheng and J.-L. Chern, "Analysis and reduction of dark zone in ultra-thin wedge plate display," J. Soc. Inf. Disp. 14, 813-818 (2006).
[CrossRef]

Chern, J.-L.

Y.-K. Cheng and J.-L. Chern, "Analysis and reduction of dark zone in ultra-thin wedge plate display," J. Soc. Inf. Disp. 14, 813-818 (2006).
[CrossRef]

Korsch, D.

D. Korsch, Reflective Optics (Academic, 1992), Chap. 10.

Laikin, M.

M. Laikin, Lens Design, 3rd ed. (Marcel Dekker, 1991), Chap. 26-27.

Large, T.

A. Travis, T. Large, and M. Buckingham, "Image quality in flat projection wedges," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 35, 850-853 (2004).
[CrossRef]

Matsui, Y.

Y. Matsui and K. Nariai, Fundamentals of Practical Aberration Theory (World Scientific, 1993).
[CrossRef]

Moore, J.

A. Travis, J. Moore, and J. Zhong, "Optical design of a flat panel projection wedge display," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 33, 461-464 (2002).

Nariai, K.

Y. Matsui and K. Nariai, Fundamentals of Practical Aberration Theory (World Scientific, 1993).
[CrossRef]

Stupp, E. H.

E. H. Stupp and M. S. Brennesholtz, Projection Display (Wiley, 1999).

Travis, A.

A. Travis, "The focal surface of a wedge projection display," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 36, 896-897 (2005).
[CrossRef]

A. Travis, T. Large, and M. Buckingham, "Image quality in flat projection wedges," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 35, 850-853 (2004).
[CrossRef]

A. Travis and J. Zhong, "Linearity in flat panel wedge project," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 34, 716-719 (2003).
[CrossRef]

A. Travis, J. Moore, and J. Zhong, "Optical design of a flat panel projection wedge display," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 33, 461-464 (2002).

A. Travis, "Flat-panel display using tapered waveguide," WIPO patent number 03/013151, 13 February 2003.

Welford, W. T.

W. T. Welford, Aberrations of Optical Systems (Adam Hilger, 1986).

Zhong, J.

A. Travis and J. Zhong, "Linearity in flat panel wedge project," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 34, 716-719 (2003).
[CrossRef]

A. Travis, J. Moore, and J. Zhong, "Optical design of a flat panel projection wedge display," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 33, 461-464 (2002).

J. Soc. Inf. Disp. (1)

Y.-K. Cheng and J.-L. Chern, "Analysis and reduction of dark zone in ultra-thin wedge plate display," J. Soc. Inf. Disp. 14, 813-818 (2006).
[CrossRef]

Society for Information Display (SID) Int. Symp. Digest Tech. Papers (4)

A. Travis, T. Large, and M. Buckingham, "Image quality in flat projection wedges," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 35, 850-853 (2004).
[CrossRef]

A. Travis, J. Moore, and J. Zhong, "Optical design of a flat panel projection wedge display," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 33, 461-464 (2002).

A. Travis and J. Zhong, "Linearity in flat panel wedge project," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 34, 716-719 (2003).
[CrossRef]

A. Travis, "The focal surface of a wedge projection display," Society for Information Display (SID) Int. Symp. Digest Tech. Papers 36, 896-897 (2005).
[CrossRef]

Other (7)

A. Travis, "Flat-panel display using tapered waveguide," WIPO patent number 03/013151, 13 February 2003.

D. Korsch, Reflective Optics (Academic, 1992), Chap. 10.

W. T. Welford, Aberrations of Optical Systems (Adam Hilger, 1986).

Y. Matsui and K. Nariai, Fundamentals of Practical Aberration Theory (World Scientific, 1993).
[CrossRef]

M. Laikin, Lens Design, 3rd ed. (Marcel Dekker, 1991), Chap. 26-27.

E. H. Stupp and M. S. Brennesholtz, Projection Display (Wiley, 1999).

More information on TracePro can be found at http://www.lambdares.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of (a) wedge-plate display, (b) ray propagation in a virtually folded wedge plate.

Fig. 2
Fig. 2

(a) Schematic diagram of a ray emitted from a finite-size object. (b) Schematic diagram when the ray is incident to the bottom of the wedge.

Fig. 3
Fig. 3

Total aberration plots of the wedge-plate display: (a) analytical result, (b) simulation result, (c) sum of the first three-order aberrations.

Fig. 4
Fig. 4

(a)–(i) Aberration plots of the first three-order terms of the wedge-plate display.

Fig. 5
Fig. 5

Aberration plots with variable n when (a) ρ = 0 , (b) ρ = 0.18 , (c) ρ = 0.65 .

Fig. 6
Fig. 6

Aberration plots with variable θ v when (a) ρ = 0 , (b) ρ = 0.18 , (c) ρ = 0.65 .

Tables (1)

Tables Icon

Table 1 Aberration Coefficients

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

x = ( L + b tan θ ) sin θ b sec θ cos [ 90 ° θ 2 * ceiling [ 90 ° θ θ c 2 θ V ] θ V ] ,
x = ( L + b tan θ ) sin θ b sec θ cos [ 90 ° θ 2 * ceiling [ 90 ° θ θ c 2 tan 1 ( tan θ V cos Φ ) ] tan 1 ( tan θ V cos Φ ) ] .
θ i = sin 1 [ ρ fp h n d 2 + ( ρ fp h ) 2 ] .
b = b + h 1 tan θ V tan θ [ tan ( 2 θ V θ ) tan θ ] .
X perfect = ( 1 fp ) m h .
D x = x real x perfect = ( L + b tan θ ) sin θ b sec θ cos [ 90 ° θ 2 ceiling [ 90 ° θ θ c 2 θ V ] θ V ] ( 1 fp ) m h .
D x = a 0 + a 1 h + a 2 ρ + a 3 h 2 + a 4 ρ 2 + a 5 ρ h + a 6 h 3 + a 7 ρ 2 h + a 8 ρ 3 + a 9 ρ h 2 + ,

Metrics