Abstract

We consider electromagnetic scattering from penetrable cylinders of general cross section. After summarizing the basic T-matrix equations the low-frequency case is examined, which leads for nonmagnetic materials to the exact result T=iRR2 in the Rayleigh limit, satisfying both reciprocity and energy constraints. Here elements of R are given by integrals of regular wave functions over the cylinder surface. A “Rayleigh expansion” is then found that is convergent throughout the Rayleigh region and the lower end of the resonance region and requires no matrix inversion. For bodies of high aspect ratio, there is a problem with significance loss during numerical integration, due to large oscillatory terms. A class of surfaces has now been found for which these terms can be removed, however, enabling us to treat aspect ratios up to 1000:1. These methods are expected to apply also in three dimensions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (57)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription