Abstract

Two-frequency radiative transfer (2f-RT) theory is developed for classical waves in random media. Depending on the ratio of the wavelength to the scale of medium fluctuation, the 2f-RT equation is either a Boltzmann-like integral equation with a complex-valued kernel or a Fokker–Planck-like differential equation with complex-valued coefficients in the phase space. The 2f-RT equation is used to estimate three physical parameters: the spatial spread, the coherence length, and the coherence bandwidth (Thouless frequency). A closed-form solution is given for the boundary layer behavior of geometrical radiative transfer and shows highly nontrivial dependence of mutual coherence on the spatial displacement and frequency difference. It is shown that the paraxial form of 2f-RT arises naturally in anisotropic media that fluctuate slowly in the longitudinal direction.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (78)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription