Abstract

Diffraction of TM-polarized waves by a slit in a thick screen of infinite conductivity is treated. The case of an arbitrary incident beam wave is considered. We study the resonances that appear when the wavelength of the incident beam wave is larger than the slit width, i.e., the subwavelength regime where a one-mode model for the slit can be considered. High anomalous values (resonances) of the transmission coefficient, the angular diffracted energy, and the magnetic field within the slit are analyzed. A simple linear relationship to determine the resonant wavelengths is proposed. We show that the transmission coefficient, the normal diffracted energy, and the magnetic field within the cavity are linear functions of the resonant wavelength and the thickness of the screen. Additionally and surprisingly, we reveal that under certain conditions the incident beam wave via the diffraction can give a suppressed light transmission; i.e., a minimum in the transmission is obtained where a maximum is expected.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (48)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription