Abstract

The surface ablation threshold fluence of fused silica and two porcine cornea layers, the epithelium and the stroma, is characterized as a function of the laser pulse duration in the range of 100fs5ps for a wavelength of 800nm (Ti:sapphire laser system). The plateaulike region observed between 100fs and 1ps for the corneal layers indicates that for use in laser surgery, laser pulse durations chosen within this range should be practically equivalent. Our model predicts that the ablation threshold will decrease rapidly for pulse durations in the low end of the femtosecond regime.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bäuerle, Laser Processing and Chemistry (Springer, 2000), Chap. 13.
  2. A. Vogel, J. Noak, G. Huttman, and G. Paltauf, "Mechanism of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
    [CrossRef]
  3. H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, "Application of ultrashort laser pulses for intrastromal refractive surgery," Graefe's Arch. Clin. Exp. Ophthalmol. 238, 33-39 (2000).
    [CrossRef]
  4. P. S. Binder, "Flap dimensions created with the IntraLase FS laser," J. Cataract Refractive Surg. 30, 26-32 (2004).
    [CrossRef]
  5. D. Touboul, F. Salin, B. Mortemousque, P. Chabassier, E. Mottay, F. Leger, and J. Colin, "Advantages and disadvantages of the femtosecond laser microkeratome," J. Fr. Ophtalmol 28, 535-546 (2005).
    [CrossRef] [PubMed]
  6. J. H. Talamo, J. Meltzer, and J. Gardner, "Reproducibility of flap thickness with IntraLase FS and Moria LSK-1 and M2 microkeratomes," J. Refract. Surg. 22, 556-561 (2006).
    [PubMed]
  7. T. Lim, S. Yang, M. Kim, and H. Tchah, "Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Am. J. Ophthalmol. 141, 833-839 (2006).
    [CrossRef] [PubMed]
  8. D. B. Tran, M. A. Sarayba, Z. Bor, C. Garufis, Y. J. Duh, C. R. Soltes, T. Juhasz, and R. M. Kurtz, "Randomized prospective clinical study comparing induced aberrations with intralase and Hansatomeflap creation in fellow eyes: potential impact on wave front guided laser in situ keratomiliusis," J. Cataract Refractive Surg. 31, 97-105 (2005).
    [CrossRef]
  9. I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, "Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation," Ophthalmology Clinics of North America 14, 347-355 (2001).
    [PubMed]
  10. B. Seitz, H. Brunner, A. Viestenz, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, G. O. Naumann, and A. Langenbucher, "Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser," Am. J. Ophthalmol. 139, 941-994 (2005).
    [CrossRef] [PubMed]
  11. M. A. Sarayba, T. Juhasz, R. S. Chuck, T. S. Ignacio, T. B. Nguyen, P. Sweet, and R. M. Kurtz, "Femtosecond laser posterior lamellar keratoplasty: a laboratory model," Cornea 24, 328-333 (2005).
    [CrossRef] [PubMed]
  12. M. A. Terry, P. J. Ousley, and B. Will, "A practical femtosecond laser procedure for DLEK endothelial transplantation: cadaver eye histology and topography," Cornea 24, 453-459 (2005).
    [CrossRef] [PubMed]
  13. B. Seitz, A. Langenbucher, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, and G. O. Naumann, "Nonmechanichal posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decompensation," Am. J. Ophthalmol. 136, 769-762 (2003).
    [CrossRef] [PubMed]
  14. T. Sami, L. Yaoming, S. Sima, S. Sun, R. C. Michael, J. G. Robert, and P. E. Deepak, "Femtosecond photodisruption of human trabecular meshwork: an in vitro study," Exp. Eye Res. 81, 298-305 (2005).
    [CrossRef]
  15. J. Y. Kim, M. J. Kim, T. Kim, H. N. Choi, J. H. Pak, and H. Tchah, "A femtosecond laser creates a stronger flap than a mechanical microkeratome," Invest. Ophthalmol. Visual Sci. 47, 599-604 (2006).
    [CrossRef]
  16. B. Sonigo, V. Iordanidou, D. Chong-Sit, F. Auclin, J. M. Ancel, A. Labbe, and C. Baudouin, "In vivo corneal confocal microscopy comparison of intralase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Invest. Ophthalmol. Visual Sci. 47, 2803-2811 (2006).
    [CrossRef]
  17. S. Preuss, A. Demchuk, and M. Stuke, "Sub-picosecond UV laser ablation of metals," Appl. Phys. A A61, 33-37 (1995).
    [CrossRef]
  18. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond to femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
    [CrossRef]
  19. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, and G. Mourou, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998).
    [CrossRef]
  20. A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
    [CrossRef]
  21. F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, "Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model," IEEE J. Quantum Electron. 32, 1717-1722 (1996).
    [CrossRef]
  22. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
    [CrossRef]
  23. E. P. Ippen and C. V. Shank, "Techniques for measurement," in Ultrashort Light Pulses, S.L.Shapiro, ed. (Springer, 1984).
  24. B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 263-370 (2003).
    [CrossRef]
  25. K. B. Wharton, C. D. Boley, A. M. Rubenchik, J. Z. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, "Effect of nonionizing prepulses in high-intensity laser-solid interactions," Phys. Rev. E 64, 025401(R) (2001).
    [CrossRef]
  26. M. H. Niemz, T. Hoppeler, T. Juhasz, and J. F. Bille, "Intrastromal ablations for refractive corneal surgery using picosecond infrared laser pulses," Laser Light Ophtalmology 5, 145-152 (1993).
  27. G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).
  28. R. W. P. McWhirter, "Spectral intensities," in Plasma Diagnostics Techniques, R.H.Huddlestone and S.L.Leonards, eds. (Academic, 1965).
  29. R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, "A new quotidian equation of state (QEOS) for hot dense matter," Phys. Fluids 31, 3059-3078 (1988).
    [CrossRef]
  30. D. Arnold, E. Cartier, and D. J. DiMaria, "Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide," Phys. Rev. B 45, 1477-1480 (1992).
    [CrossRef]
  31. J. A. Squier and M. Muller, "High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging," Rev. Sci. Instrum. 72, 2855-2867 (2001).
    [CrossRef]

2006 (4)

J. H. Talamo, J. Meltzer, and J. Gardner, "Reproducibility of flap thickness with IntraLase FS and Moria LSK-1 and M2 microkeratomes," J. Refract. Surg. 22, 556-561 (2006).
[PubMed]

T. Lim, S. Yang, M. Kim, and H. Tchah, "Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Am. J. Ophthalmol. 141, 833-839 (2006).
[CrossRef] [PubMed]

J. Y. Kim, M. J. Kim, T. Kim, H. N. Choi, J. H. Pak, and H. Tchah, "A femtosecond laser creates a stronger flap than a mechanical microkeratome," Invest. Ophthalmol. Visual Sci. 47, 599-604 (2006).
[CrossRef]

B. Sonigo, V. Iordanidou, D. Chong-Sit, F. Auclin, J. M. Ancel, A. Labbe, and C. Baudouin, "In vivo corneal confocal microscopy comparison of intralase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Invest. Ophthalmol. Visual Sci. 47, 2803-2811 (2006).
[CrossRef]

2005 (7)

T. Sami, L. Yaoming, S. Sima, S. Sun, R. C. Michael, J. G. Robert, and P. E. Deepak, "Femtosecond photodisruption of human trabecular meshwork: an in vitro study," Exp. Eye Res. 81, 298-305 (2005).
[CrossRef]

B. Seitz, H. Brunner, A. Viestenz, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, G. O. Naumann, and A. Langenbucher, "Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser," Am. J. Ophthalmol. 139, 941-994 (2005).
[CrossRef] [PubMed]

M. A. Sarayba, T. Juhasz, R. S. Chuck, T. S. Ignacio, T. B. Nguyen, P. Sweet, and R. M. Kurtz, "Femtosecond laser posterior lamellar keratoplasty: a laboratory model," Cornea 24, 328-333 (2005).
[CrossRef] [PubMed]

M. A. Terry, P. J. Ousley, and B. Will, "A practical femtosecond laser procedure for DLEK endothelial transplantation: cadaver eye histology and topography," Cornea 24, 453-459 (2005).
[CrossRef] [PubMed]

D. B. Tran, M. A. Sarayba, Z. Bor, C. Garufis, Y. J. Duh, C. R. Soltes, T. Juhasz, and R. M. Kurtz, "Randomized prospective clinical study comparing induced aberrations with intralase and Hansatomeflap creation in fellow eyes: potential impact on wave front guided laser in situ keratomiliusis," J. Cataract Refractive Surg. 31, 97-105 (2005).
[CrossRef]

A. Vogel, J. Noak, G. Huttman, and G. Paltauf, "Mechanism of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

D. Touboul, F. Salin, B. Mortemousque, P. Chabassier, E. Mottay, F. Leger, and J. Colin, "Advantages and disadvantages of the femtosecond laser microkeratome," J. Fr. Ophtalmol 28, 535-546 (2005).
[CrossRef] [PubMed]

2004 (2)

P. S. Binder, "Flap dimensions created with the IntraLase FS laser," J. Cataract Refractive Surg. 30, 26-32 (2004).
[CrossRef]

G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).

2003 (2)

B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 263-370 (2003).
[CrossRef]

B. Seitz, A. Langenbucher, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, and G. O. Naumann, "Nonmechanichal posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decompensation," Am. J. Ophthalmol. 136, 769-762 (2003).
[CrossRef] [PubMed]

2001 (3)

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, "Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation," Ophthalmology Clinics of North America 14, 347-355 (2001).
[PubMed]

K. B. Wharton, C. D. Boley, A. M. Rubenchik, J. Z. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, "Effect of nonionizing prepulses in high-intensity laser-solid interactions," Phys. Rev. E 64, 025401(R) (2001).
[CrossRef]

J. A. Squier and M. Muller, "High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging," Rev. Sci. Instrum. 72, 2855-2867 (2001).
[CrossRef]

2000 (1)

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, "Application of ultrashort laser pulses for intrastromal refractive surgery," Graefe's Arch. Clin. Exp. Ophthalmol. 238, 33-39 (2000).
[CrossRef]

1999 (1)

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

1998 (1)

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, and G. Mourou, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

1996 (2)

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, "Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model," IEEE J. Quantum Electron. 32, 1717-1722 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond to femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

1995 (1)

S. Preuss, A. Demchuk, and M. Stuke, "Sub-picosecond UV laser ablation of metals," Appl. Phys. A A61, 33-37 (1995).
[CrossRef]

1993 (1)

M. H. Niemz, T. Hoppeler, T. Juhasz, and J. F. Bille, "Intrastromal ablations for refractive corneal surgery using picosecond infrared laser pulses," Laser Light Ophtalmology 5, 145-152 (1993).

1992 (1)

D. Arnold, E. Cartier, and D. J. DiMaria, "Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide," Phys. Rev. B 45, 1477-1480 (1992).
[CrossRef]

1988 (1)

R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, "A new quotidian equation of state (QEOS) for hot dense matter," Phys. Fluids 31, 3059-3078 (1988).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Ancel, J. M.

B. Sonigo, V. Iordanidou, D. Chong-Sit, F. Auclin, J. M. Ancel, A. Labbe, and C. Baudouin, "In vivo corneal confocal microscopy comparison of intralase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Invest. Ophthalmol. Visual Sci. 47, 2803-2811 (2006).
[CrossRef]

Arnold, D.

D. Arnold, E. Cartier, and D. J. DiMaria, "Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide," Phys. Rev. B 45, 1477-1480 (1992).
[CrossRef]

Auclin, F.

B. Sonigo, V. Iordanidou, D. Chong-Sit, F. Auclin, J. M. Ancel, A. Labbe, and C. Baudouin, "In vivo corneal confocal microscopy comparison of intralase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Invest. Ophthalmol. Visual Sci. 47, 2803-2811 (2006).
[CrossRef]

Backus, S.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

Baudouin, C.

B. Sonigo, V. Iordanidou, D. Chong-Sit, F. Auclin, J. M. Ancel, A. Labbe, and C. Baudouin, "In vivo corneal confocal microscopy comparison of intralase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Invest. Ophthalmol. Visual Sci. 47, 2803-2811 (2006).
[CrossRef]

Bäuerle, D.

D. Bäuerle, Laser Processing and Chemistry (Springer, 2000), Chap. 13.

Bigaouette, N.

G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).

Bille, J. F.

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, "Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model," IEEE J. Quantum Electron. 32, 1717-1722 (1996).
[CrossRef]

M. H. Niemz, T. Hoppeler, T. Juhasz, and J. F. Bille, "Intrastromal ablations for refractive corneal surgery using picosecond infrared laser pulses," Laser Light Ophtalmology 5, 145-152 (1993).

Binder, P. S.

P. S. Binder, "Flap dimensions created with the IntraLase FS laser," J. Cataract Refractive Surg. 30, 26-32 (2004).
[CrossRef]

Boley, C. D.

K. B. Wharton, C. D. Boley, A. M. Rubenchik, J. Z. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, "Effect of nonionizing prepulses in high-intensity laser-solid interactions," Phys. Rev. E 64, 025401(R) (2001).
[CrossRef]

Bor, Z.

D. B. Tran, M. A. Sarayba, Z. Bor, C. Garufis, Y. J. Duh, C. R. Soltes, T. Juhasz, and R. M. Kurtz, "Randomized prospective clinical study comparing induced aberrations with intralase and Hansatomeflap creation in fellow eyes: potential impact on wave front guided laser in situ keratomiliusis," J. Cataract Refractive Surg. 31, 97-105 (2005).
[CrossRef]

Brunette, I.

G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).

Brunner, H.

B. Seitz, H. Brunner, A. Viestenz, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, G. O. Naumann, and A. Langenbucher, "Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser," Am. J. Ophthalmol. 139, 941-994 (2005).
[CrossRef] [PubMed]

Cartier, E.

D. Arnold, E. Cartier, and D. J. DiMaria, "Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide," Phys. Rev. B 45, 1477-1480 (1992).
[CrossRef]

Chabassier, P.

D. Touboul, F. Salin, B. Mortemousque, P. Chabassier, E. Mottay, F. Leger, and J. Colin, "Advantages and disadvantages of the femtosecond laser microkeratome," J. Fr. Ophtalmol 28, 535-546 (2005).
[CrossRef] [PubMed]

Chaker, M.

G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).

Cheng, Z.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, and G. Mourou, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

Choi, H. N.

J. Y. Kim, M. J. Kim, T. Kim, H. N. Choi, J. H. Pak, and H. Tchah, "A femtosecond laser creates a stronger flap than a mechanical microkeratome," Invest. Ophthalmol. Visual Sci. 47, 599-604 (2006).
[CrossRef]

Chong-Sit, D.

B. Sonigo, V. Iordanidou, D. Chong-Sit, F. Auclin, J. M. Ancel, A. Labbe, and C. Baudouin, "In vivo corneal confocal microscopy comparison of intralase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Invest. Ophthalmol. Visual Sci. 47, 2803-2811 (2006).
[CrossRef]

Chuck, R. S.

M. A. Sarayba, T. Juhasz, R. S. Chuck, T. S. Ignacio, T. B. Nguyen, P. Sweet, and R. M. Kurtz, "Femtosecond laser posterior lamellar keratoplasty: a laboratory model," Cornea 24, 328-333 (2005).
[CrossRef] [PubMed]

Colin, J.

D. Touboul, F. Salin, B. Mortemousque, P. Chabassier, E. Mottay, F. Leger, and J. Colin, "Advantages and disadvantages of the femtosecond laser microkeratome," J. Fr. Ophtalmol 28, 535-546 (2005).
[CrossRef] [PubMed]

Cowan, T. E.

K. B. Wharton, C. D. Boley, A. M. Rubenchik, J. Z. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, "Effect of nonionizing prepulses in high-intensity laser-solid interactions," Phys. Rev. E 64, 025401(R) (2001).
[CrossRef]

Crane, J.

K. B. Wharton, C. D. Boley, A. M. Rubenchik, J. Z. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, "Effect of nonionizing prepulses in high-intensity laser-solid interactions," Phys. Rev. E 64, 025401(R) (2001).
[CrossRef]

Deepak, P. E.

T. Sami, L. Yaoming, S. Sima, S. Sun, R. C. Michael, J. G. Robert, and P. E. Deepak, "Femtosecond photodisruption of human trabecular meshwork: an in vitro study," Exp. Eye Res. 81, 298-305 (2005).
[CrossRef]

Demchuk, A.

S. Preuss, A. Demchuk, and M. Stuke, "Sub-picosecond UV laser ablation of metals," Appl. Phys. A A61, 33-37 (1995).
[CrossRef]

DiMaria, D. J.

D. Arnold, E. Cartier, and D. J. DiMaria, "Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide," Phys. Rev. B 45, 1477-1480 (1992).
[CrossRef]

Ditmire, T.

K. B. Wharton, C. D. Boley, A. M. Rubenchik, J. Z. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, "Effect of nonionizing prepulses in high-intensity laser-solid interactions," Phys. Rev. E 64, 025401(R) (2001).
[CrossRef]

Drommer, W.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, "Application of ultrashort laser pulses for intrastromal refractive surgery," Graefe's Arch. Clin. Exp. Ophthalmol. 238, 33-39 (2000).
[CrossRef]

Duh, Y. J.

D. B. Tran, M. A. Sarayba, Z. Bor, C. Garufis, Y. J. Duh, C. R. Soltes, T. Juhasz, and R. M. Kurtz, "Randomized prospective clinical study comparing induced aberrations with intralase and Hansatomeflap creation in fellow eyes: potential impact on wave front guided laser in situ keratomiliusis," J. Cataract Refractive Surg. 31, 97-105 (2005).
[CrossRef]

Ertmer, W.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, "Application of ultrashort laser pulses for intrastromal refractive surgery," Graefe's Arch. Clin. Exp. Ophthalmol. 238, 33-39 (2000).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond to femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Ferincz, I.

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, "Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation," Ophthalmology Clinics of North America 14, 347-355 (2001).
[PubMed]

Fisher, B. T.

B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 263-370 (2003).
[CrossRef]

Gardner, J.

J. H. Talamo, J. Meltzer, and J. Gardner, "Reproducibility of flap thickness with IntraLase FS and Moria LSK-1 and M2 microkeratomes," J. Refract. Surg. 22, 556-561 (2006).
[PubMed]

Garufis, C.

D. B. Tran, M. A. Sarayba, Z. Bor, C. Garufis, Y. J. Duh, C. R. Soltes, T. Juhasz, and R. M. Kurtz, "Randomized prospective clinical study comparing induced aberrations with intralase and Hansatomeflap creation in fellow eyes: potential impact on wave front guided laser in situ keratomiliusis," J. Cataract Refractive Surg. 31, 97-105 (2005).
[CrossRef]

Germain, L.

G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).

Girard, G.

G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).

Goldstein, M. H.

B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 263-370 (2003).
[CrossRef]

Hahn, D. W.

B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 263-370 (2003).
[CrossRef]

Hays, G.

K. B. Wharton, C. D. Boley, A. M. Rubenchik, J. Z. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, "Effect of nonionizing prepulses in high-intensity laser-solid interactions," Phys. Rev. E 64, 025401(R) (2001).
[CrossRef]

Heisterkamp, A.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, "Application of ultrashort laser pulses for intrastromal refractive surgery," Graefe's Arch. Clin. Exp. Ophthalmol. 238, 33-39 (2000).
[CrossRef]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond to femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Hetzel, U.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, "Application of ultrashort laser pulses for intrastromal refractive surgery," Graefe's Arch. Clin. Exp. Ophthalmol. 238, 33-39 (2000).
[CrossRef]

Hofmann-Rummelt, C.

B. Seitz, H. Brunner, A. Viestenz, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, G. O. Naumann, and A. Langenbucher, "Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser," Am. J. Ophthalmol. 139, 941-994 (2005).
[CrossRef] [PubMed]

B. Seitz, A. Langenbucher, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, and G. O. Naumann, "Nonmechanichal posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decompensation," Am. J. Ophthalmol. 136, 769-762 (2003).
[CrossRef] [PubMed]

Hoppeler, T.

M. H. Niemz, T. Hoppeler, T. Juhasz, and J. F. Bille, "Intrastromal ablations for refractive corneal surgery using picosecond infrared laser pulses," Laser Light Ophtalmology 5, 145-152 (1993).

Horvath, C.

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, "Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation," Ophthalmology Clinics of North America 14, 347-355 (2001).
[PubMed]

Huttman, G.

A. Vogel, J. Noak, G. Huttman, and G. Paltauf, "Mechanism of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Ignacio, T. S.

M. A. Sarayba, T. Juhasz, R. S. Chuck, T. S. Ignacio, T. B. Nguyen, P. Sweet, and R. M. Kurtz, "Femtosecond laser posterior lamellar keratoplasty: a laboratory model," Cornea 24, 328-333 (2005).
[CrossRef] [PubMed]

Iordanidou, V.

B. Sonigo, V. Iordanidou, D. Chong-Sit, F. Auclin, J. M. Ancel, A. Labbe, and C. Baudouin, "In vivo corneal confocal microscopy comparison of intralase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Invest. Ophthalmol. Visual Sci. 47, 2803-2811 (2006).
[CrossRef]

Ippen, E. P.

E. P. Ippen and C. V. Shank, "Techniques for measurement," in Ultrashort Light Pulses, S.L.Shapiro, ed. (Springer, 1984).

Juhasz, T.

D. B. Tran, M. A. Sarayba, Z. Bor, C. Garufis, Y. J. Duh, C. R. Soltes, T. Juhasz, and R. M. Kurtz, "Randomized prospective clinical study comparing induced aberrations with intralase and Hansatomeflap creation in fellow eyes: potential impact on wave front guided laser in situ keratomiliusis," J. Cataract Refractive Surg. 31, 97-105 (2005).
[CrossRef]

M. A. Sarayba, T. Juhasz, R. S. Chuck, T. S. Ignacio, T. B. Nguyen, P. Sweet, and R. M. Kurtz, "Femtosecond laser posterior lamellar keratoplasty: a laboratory model," Cornea 24, 328-333 (2005).
[CrossRef] [PubMed]

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, "Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation," Ophthalmology Clinics of North America 14, 347-355 (2001).
[PubMed]

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, "Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model," IEEE J. Quantum Electron. 32, 1717-1722 (1996).
[CrossRef]

M. H. Niemz, T. Hoppeler, T. Juhasz, and J. F. Bille, "Intrastromal ablations for refractive corneal surgery using picosecond infrared laser pulses," Laser Light Ophtalmology 5, 145-152 (1993).

Kapteyn, H.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

Kieffer, J.-C.

G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).

Kim, J. Y.

J. Y. Kim, M. J. Kim, T. Kim, H. N. Choi, J. H. Pak, and H. Tchah, "A femtosecond laser creates a stronger flap than a mechanical microkeratome," Invest. Ophthalmol. Visual Sci. 47, 599-604 (2006).
[CrossRef]

Kim, M.

T. Lim, S. Yang, M. Kim, and H. Tchah, "Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Am. J. Ophthalmol. 141, 833-839 (2006).
[CrossRef] [PubMed]

Kim, M. J.

J. Y. Kim, M. J. Kim, T. Kim, H. N. Choi, J. H. Pak, and H. Tchah, "A femtosecond laser creates a stronger flap than a mechanical microkeratome," Invest. Ophthalmol. Visual Sci. 47, 599-604 (2006).
[CrossRef]

Kim, T.

J. Y. Kim, M. J. Kim, T. Kim, H. N. Choi, J. H. Pak, and H. Tchah, "A femtosecond laser creates a stronger flap than a mechanical microkeratome," Invest. Ophthalmol. Visual Sci. 47, 599-604 (2006).
[CrossRef]

Kiss, K.

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, "Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation," Ophthalmology Clinics of North America 14, 347-355 (2001).
[PubMed]

Kruger, J.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, and G. Mourou, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

Kurtz, R.

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, "Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation," Ophthalmology Clinics of North America 14, 347-355 (2001).
[PubMed]

Kurtz, R. M.

M. A. Sarayba, T. Juhasz, R. S. Chuck, T. S. Ignacio, T. B. Nguyen, P. Sweet, and R. M. Kurtz, "Femtosecond laser posterior lamellar keratoplasty: a laboratory model," Cornea 24, 328-333 (2005).
[CrossRef] [PubMed]

D. B. Tran, M. A. Sarayba, Z. Bor, C. Garufis, Y. J. Duh, C. R. Soltes, T. Juhasz, and R. M. Kurtz, "Randomized prospective clinical study comparing induced aberrations with intralase and Hansatomeflap creation in fellow eyes: potential impact on wave front guided laser in situ keratomiliusis," J. Cataract Refractive Surg. 31, 97-105 (2005).
[CrossRef]

Labbe, A.

B. Sonigo, V. Iordanidou, D. Chong-Sit, F. Auclin, J. M. Ancel, A. Labbe, and C. Baudouin, "In vivo corneal confocal microscopy comparison of intralase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Invest. Ophthalmol. Visual Sci. 47, 2803-2811 (2006).
[CrossRef]

Langenbucher, A.

B. Seitz, H. Brunner, A. Viestenz, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, G. O. Naumann, and A. Langenbucher, "Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser," Am. J. Ophthalmol. 139, 941-994 (2005).
[CrossRef] [PubMed]

B. Seitz, A. Langenbucher, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, and G. O. Naumann, "Nonmechanichal posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decompensation," Am. J. Ophthalmol. 136, 769-762 (2003).
[CrossRef] [PubMed]

Lavertu, P.-L.

G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).

Leger, F.

D. Touboul, F. Salin, B. Mortemousque, P. Chabassier, E. Mottay, F. Leger, and J. Colin, "Advantages and disadvantages of the femtosecond laser microkeratome," J. Fr. Ophtalmol 28, 535-546 (2005).
[CrossRef] [PubMed]

Lenzner, M.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, and G. Mourou, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

Lim, T.

T. Lim, S. Yang, M. Kim, and H. Tchah, "Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Am. J. Ophthalmol. 141, 833-839 (2006).
[CrossRef] [PubMed]

Loesel, F. H.

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, "Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model," IEEE J. Quantum Electron. 32, 1717-1722 (1996).
[CrossRef]

Lubatschowski, H.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, "Application of ultrashort laser pulses for intrastromal refractive surgery," Graefe's Arch. Clin. Exp. Ophthalmol. 238, 33-39 (2000).
[CrossRef]

Maatz, G.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, "Application of ultrashort laser pulses for intrastromal refractive surgery," Graefe's Arch. Clin. Exp. Ophthalmol. 238, 33-39 (2000).
[CrossRef]

Martin, F.

G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).

Masiello, K. A.

B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 263-370 (2003).
[CrossRef]

McWhirter, R. W. P.

R. W. P. McWhirter, "Spectral intensities," in Plasma Diagnostics Techniques, R.H.Huddlestone and S.L.Leonards, eds. (Academic, 1965).

Meltzer, J.

J. H. Talamo, J. Meltzer, and J. Gardner, "Reproducibility of flap thickness with IntraLase FS and Moria LSK-1 and M2 microkeratomes," J. Refract. Surg. 22, 556-561 (2006).
[PubMed]

Michael, R. C.

T. Sami, L. Yaoming, S. Sima, S. Sun, R. C. Michael, J. G. Robert, and P. E. Deepak, "Femtosecond photodisruption of human trabecular meshwork: an in vitro study," Exp. Eye Res. 81, 298-305 (2005).
[CrossRef]

More, R. M.

R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, "A new quotidian equation of state (QEOS) for hot dense matter," Phys. Fluids 31, 3059-3078 (1988).
[CrossRef]

Mortemousque, B.

D. Touboul, F. Salin, B. Mortemousque, P. Chabassier, E. Mottay, F. Leger, and J. Colin, "Advantages and disadvantages of the femtosecond laser microkeratome," J. Fr. Ophtalmol 28, 535-546 (2005).
[CrossRef] [PubMed]

Mottay, E.

D. Touboul, F. Salin, B. Mortemousque, P. Chabassier, E. Mottay, F. Leger, and J. Colin, "Advantages and disadvantages of the femtosecond laser microkeratome," J. Fr. Ophtalmol 28, 535-546 (2005).
[CrossRef] [PubMed]

Mourou, G.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, and G. Mourou, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Muller, M.

J. A. Squier and M. Muller, "High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging," Rev. Sci. Instrum. 72, 2855-2867 (2001).
[CrossRef]

Murnane, M.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

Naumann, G. O.

B. Seitz, H. Brunner, A. Viestenz, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, G. O. Naumann, and A. Langenbucher, "Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser," Am. J. Ophthalmol. 139, 941-994 (2005).
[CrossRef] [PubMed]

B. Seitz, A. Langenbucher, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, and G. O. Naumann, "Nonmechanichal posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decompensation," Am. J. Ophthalmol. 136, 769-762 (2003).
[CrossRef] [PubMed]

Nguyen, T. B.

M. A. Sarayba, T. Juhasz, R. S. Chuck, T. S. Ignacio, T. B. Nguyen, P. Sweet, and R. M. Kurtz, "Femtosecond laser posterior lamellar keratoplasty: a laboratory model," Cornea 24, 328-333 (2005).
[CrossRef] [PubMed]

Niemz, M. H.

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, "Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model," IEEE J. Quantum Electron. 32, 1717-1722 (1996).
[CrossRef]

M. H. Niemz, T. Hoppeler, T. Juhasz, and J. F. Bille, "Intrastromal ablations for refractive corneal surgery using picosecond infrared laser pulses," Laser Light Ophtalmology 5, 145-152 (1993).

Noak, J.

A. Vogel, J. Noak, G. Huttman, and G. Paltauf, "Mechanism of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Olivié, G.

G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).

Ousley, P. J.

M. A. Terry, P. J. Ousley, and B. Will, "A practical femtosecond laser procedure for DLEK endothelial transplantation: cadaver eye histology and topography," Cornea 24, 453-459 (2005).
[CrossRef] [PubMed]

Ozaki, T.

G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).

Pak, J. H.

J. Y. Kim, M. J. Kim, T. Kim, H. N. Choi, J. H. Pak, and H. Tchah, "A femtosecond laser creates a stronger flap than a mechanical microkeratome," Invest. Ophthalmol. Visual Sci. 47, 599-604 (2006).
[CrossRef]

Paltauf, G.

A. Vogel, J. Noak, G. Huttman, and G. Paltauf, "Mechanism of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Parent, M.

G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond to femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Preuss, S.

S. Preuss, A. Demchuk, and M. Stuke, "Sub-picosecond UV laser ablation of metals," Appl. Phys. A A61, 33-37 (1995).
[CrossRef]

Ratkay-Traub, I.

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, "Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation," Ophthalmology Clinics of North America 14, 347-355 (2001).
[PubMed]

Robert, J. G.

T. Sami, L. Yaoming, S. Sima, S. Sun, R. C. Michael, J. G. Robert, and P. E. Deepak, "Femtosecond photodisruption of human trabecular meshwork: an in vitro study," Exp. Eye Res. 81, 298-305 (2005).
[CrossRef]

Rubenchik, A. M.

K. B. Wharton, C. D. Boley, A. M. Rubenchik, J. Z. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, "Effect of nonionizing prepulses in high-intensity laser-solid interactions," Phys. Rev. E 64, 025401(R) (2001).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond to femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Salin, F.

D. Touboul, F. Salin, B. Mortemousque, P. Chabassier, E. Mottay, F. Leger, and J. Colin, "Advantages and disadvantages of the femtosecond laser microkeratome," J. Fr. Ophtalmol 28, 535-546 (2005).
[CrossRef] [PubMed]

Sami, T.

T. Sami, L. Yaoming, S. Sima, S. Sun, R. C. Michael, J. G. Robert, and P. E. Deepak, "Femtosecond photodisruption of human trabecular meshwork: an in vitro study," Exp. Eye Res. 81, 298-305 (2005).
[CrossRef]

Sarayba, M. A.

M. A. Sarayba, T. Juhasz, R. S. Chuck, T. S. Ignacio, T. B. Nguyen, P. Sweet, and R. M. Kurtz, "Femtosecond laser posterior lamellar keratoplasty: a laboratory model," Cornea 24, 328-333 (2005).
[CrossRef] [PubMed]

D. B. Tran, M. A. Sarayba, Z. Bor, C. Garufis, Y. J. Duh, C. R. Soltes, T. Juhasz, and R. M. Kurtz, "Randomized prospective clinical study comparing induced aberrations with intralase and Hansatomeflap creation in fellow eyes: potential impact on wave front guided laser in situ keratomiliusis," J. Cataract Refractive Surg. 31, 97-105 (2005).
[CrossRef]

Sartania, S.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, and G. Mourou, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

Schotzer-Schrehardt, U.

B. Seitz, H. Brunner, A. Viestenz, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, G. O. Naumann, and A. Langenbucher, "Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser," Am. J. Ophthalmol. 139, 941-994 (2005).
[CrossRef] [PubMed]

B. Seitz, A. Langenbucher, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, and G. O. Naumann, "Nonmechanichal posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decompensation," Am. J. Ophthalmol. 136, 769-762 (2003).
[CrossRef] [PubMed]

Seitz, B.

B. Seitz, H. Brunner, A. Viestenz, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, G. O. Naumann, and A. Langenbucher, "Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser," Am. J. Ophthalmol. 139, 941-994 (2005).
[CrossRef] [PubMed]

B. Seitz, A. Langenbucher, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, and G. O. Naumann, "Nonmechanichal posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decompensation," Am. J. Ophthalmol. 136, 769-762 (2003).
[CrossRef] [PubMed]

Shank, C. V.

E. P. Ippen and C. V. Shank, "Techniques for measurement," in Ultrashort Light Pulses, S.L.Shapiro, ed. (Springer, 1984).

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond to femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Sima, S.

T. Sami, L. Yaoming, S. Sima, S. Sun, R. C. Michael, J. G. Robert, and P. E. Deepak, "Femtosecond photodisruption of human trabecular meshwork: an in vitro study," Exp. Eye Res. 81, 298-305 (2005).
[CrossRef]

Soltes, C. R.

D. B. Tran, M. A. Sarayba, Z. Bor, C. Garufis, Y. J. Duh, C. R. Soltes, T. Juhasz, and R. M. Kurtz, "Randomized prospective clinical study comparing induced aberrations with intralase and Hansatomeflap creation in fellow eyes: potential impact on wave front guided laser in situ keratomiliusis," J. Cataract Refractive Surg. 31, 97-105 (2005).
[CrossRef]

Sonigo, B.

B. Sonigo, V. Iordanidou, D. Chong-Sit, F. Auclin, J. M. Ancel, A. Labbe, and C. Baudouin, "In vivo corneal confocal microscopy comparison of intralase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Invest. Ophthalmol. Visual Sci. 47, 2803-2811 (2006).
[CrossRef]

Spielmann, Ch.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, and G. Mourou, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

Squier, J. A.

J. A. Squier and M. Muller, "High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging," Rev. Sci. Instrum. 72, 2855-2867 (2001).
[CrossRef]

Strickland, D.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond to femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Stuke, M.

S. Preuss, A. Demchuk, and M. Stuke, "Sub-picosecond UV laser ablation of metals," Appl. Phys. A A61, 33-37 (1995).
[CrossRef]

Suarez, C.

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, "Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation," Ophthalmology Clinics of North America 14, 347-355 (2001).
[PubMed]

Sun, S.

T. Sami, L. Yaoming, S. Sima, S. Sun, R. C. Michael, J. G. Robert, and P. E. Deepak, "Femtosecond photodisruption of human trabecular meshwork: an in vitro study," Exp. Eye Res. 81, 298-305 (2005).
[CrossRef]

Sweet, P.

M. A. Sarayba, T. Juhasz, R. S. Chuck, T. S. Ignacio, T. B. Nguyen, P. Sweet, and R. M. Kurtz, "Femtosecond laser posterior lamellar keratoplasty: a laboratory model," Cornea 24, 328-333 (2005).
[CrossRef] [PubMed]

Talamo, J. H.

J. H. Talamo, J. Meltzer, and J. Gardner, "Reproducibility of flap thickness with IntraLase FS and Moria LSK-1 and M2 microkeratomes," J. Refract. Surg. 22, 556-561 (2006).
[PubMed]

Tchah, H.

J. Y. Kim, M. J. Kim, T. Kim, H. N. Choi, J. H. Pak, and H. Tchah, "A femtosecond laser creates a stronger flap than a mechanical microkeratome," Invest. Ophthalmol. Visual Sci. 47, 599-604 (2006).
[CrossRef]

T. Lim, S. Yang, M. Kim, and H. Tchah, "Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Am. J. Ophthalmol. 141, 833-839 (2006).
[CrossRef] [PubMed]

Terry, M. A.

M. A. Terry, P. J. Ousley, and B. Will, "A practical femtosecond laser procedure for DLEK endothelial transplantation: cadaver eye histology and topography," Cornea 24, 453-459 (2005).
[CrossRef] [PubMed]

Tien, A. C.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

Touboul, D.

D. Touboul, F. Salin, B. Mortemousque, P. Chabassier, E. Mottay, F. Leger, and J. Colin, "Advantages and disadvantages of the femtosecond laser microkeratome," J. Fr. Ophtalmol 28, 535-546 (2005).
[CrossRef] [PubMed]

Tran, D. B.

D. B. Tran, M. A. Sarayba, Z. Bor, C. Garufis, Y. J. Duh, C. R. Soltes, T. Juhasz, and R. M. Kurtz, "Randomized prospective clinical study comparing induced aberrations with intralase and Hansatomeflap creation in fellow eyes: potential impact on wave front guided laser in situ keratomiliusis," J. Cataract Refractive Surg. 31, 97-105 (2005).
[CrossRef]

Vidal, F.

G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).

Viestenz, A.

B. Seitz, H. Brunner, A. Viestenz, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, G. O. Naumann, and A. Langenbucher, "Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser," Am. J. Ophthalmol. 139, 941-994 (2005).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel, J. Noak, G. Huttman, and G. Paltauf, "Mechanism of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Warren, K. H.

R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, "A new quotidian equation of state (QEOS) for hot dense matter," Phys. Fluids 31, 3059-3078 (1988).
[CrossRef]

Welling, H.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, "Application of ultrashort laser pulses for intrastromal refractive surgery," Graefe's Arch. Clin. Exp. Ophthalmol. 238, 33-39 (2000).
[CrossRef]

Wharton, K. B.

K. B. Wharton, C. D. Boley, A. M. Rubenchik, J. Z. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, "Effect of nonionizing prepulses in high-intensity laser-solid interactions," Phys. Rev. E 64, 025401(R) (2001).
[CrossRef]

Will, B.

M. A. Terry, P. J. Ousley, and B. Will, "A practical femtosecond laser procedure for DLEK endothelial transplantation: cadaver eye histology and topography," Cornea 24, 453-459 (2005).
[CrossRef] [PubMed]

Yang, S.

T. Lim, S. Yang, M. Kim, and H. Tchah, "Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Am. J. Ophthalmol. 141, 833-839 (2006).
[CrossRef] [PubMed]

Yaoming, L.

T. Sami, L. Yaoming, S. Sima, S. Sun, R. C. Michael, J. G. Robert, and P. E. Deepak, "Femtosecond photodisruption of human trabecular meshwork: an in vitro study," Exp. Eye Res. 81, 298-305 (2005).
[CrossRef]

Young, D. A.

R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, "A new quotidian equation of state (QEOS) for hot dense matter," Phys. Fluids 31, 3059-3078 (1988).
[CrossRef]

Zhou, S.

G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).

Zimmerman, G. B.

R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, "A new quotidian equation of state (QEOS) for hot dense matter," Phys. Fluids 31, 3059-3078 (1988).
[CrossRef]

Zweiback, J. Z.

K. B. Wharton, C. D. Boley, A. M. Rubenchik, J. Z. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, "Effect of nonionizing prepulses in high-intensity laser-solid interactions," Phys. Rev. E 64, 025401(R) (2001).
[CrossRef]

Am. J. Ophthalmol. (3)

T. Lim, S. Yang, M. Kim, and H. Tchah, "Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Am. J. Ophthalmol. 141, 833-839 (2006).
[CrossRef] [PubMed]

B. Seitz, H. Brunner, A. Viestenz, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, G. O. Naumann, and A. Langenbucher, "Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser," Am. J. Ophthalmol. 139, 941-994 (2005).
[CrossRef] [PubMed]

B. Seitz, A. Langenbucher, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, and G. O. Naumann, "Nonmechanichal posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decompensation," Am. J. Ophthalmol. 136, 769-762 (2003).
[CrossRef] [PubMed]

Appl. Phys. A (1)

S. Preuss, A. Demchuk, and M. Stuke, "Sub-picosecond UV laser ablation of metals," Appl. Phys. A A61, 33-37 (1995).
[CrossRef]

Appl. Phys. B (1)

A. Vogel, J. Noak, G. Huttman, and G. Paltauf, "Mechanism of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Cornea (3)

M. A. Sarayba, T. Juhasz, R. S. Chuck, T. S. Ignacio, T. B. Nguyen, P. Sweet, and R. M. Kurtz, "Femtosecond laser posterior lamellar keratoplasty: a laboratory model," Cornea 24, 328-333 (2005).
[CrossRef] [PubMed]

M. A. Terry, P. J. Ousley, and B. Will, "A practical femtosecond laser procedure for DLEK endothelial transplantation: cadaver eye histology and topography," Cornea 24, 453-459 (2005).
[CrossRef] [PubMed]

B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 263-370 (2003).
[CrossRef]

Exp. Eye Res. (1)

T. Sami, L. Yaoming, S. Sima, S. Sun, R. C. Michael, J. G. Robert, and P. E. Deepak, "Femtosecond photodisruption of human trabecular meshwork: an in vitro study," Exp. Eye Res. 81, 298-305 (2005).
[CrossRef]

Graefe's Arch. Clin. Exp. Ophthalmol. (1)

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, "Application of ultrashort laser pulses for intrastromal refractive surgery," Graefe's Arch. Clin. Exp. Ophthalmol. 238, 33-39 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, "Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model," IEEE J. Quantum Electron. 32, 1717-1722 (1996).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (2)

J. Y. Kim, M. J. Kim, T. Kim, H. N. Choi, J. H. Pak, and H. Tchah, "A femtosecond laser creates a stronger flap than a mechanical microkeratome," Invest. Ophthalmol. Visual Sci. 47, 599-604 (2006).
[CrossRef]

B. Sonigo, V. Iordanidou, D. Chong-Sit, F. Auclin, J. M. Ancel, A. Labbe, and C. Baudouin, "In vivo corneal confocal microscopy comparison of intralase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Invest. Ophthalmol. Visual Sci. 47, 2803-2811 (2006).
[CrossRef]

J. Cataract Refractive Surg. (2)

P. S. Binder, "Flap dimensions created with the IntraLase FS laser," J. Cataract Refractive Surg. 30, 26-32 (2004).
[CrossRef]

D. B. Tran, M. A. Sarayba, Z. Bor, C. Garufis, Y. J. Duh, C. R. Soltes, T. Juhasz, and R. M. Kurtz, "Randomized prospective clinical study comparing induced aberrations with intralase and Hansatomeflap creation in fellow eyes: potential impact on wave front guided laser in situ keratomiliusis," J. Cataract Refractive Surg. 31, 97-105 (2005).
[CrossRef]

J. Fr. Ophtalmol (1)

D. Touboul, F. Salin, B. Mortemousque, P. Chabassier, E. Mottay, F. Leger, and J. Colin, "Advantages and disadvantages of the femtosecond laser microkeratome," J. Fr. Ophtalmol 28, 535-546 (2005).
[CrossRef] [PubMed]

J. Refract. Surg. (1)

J. H. Talamo, J. Meltzer, and J. Gardner, "Reproducibility of flap thickness with IntraLase FS and Moria LSK-1 and M2 microkeratomes," J. Refract. Surg. 22, 556-561 (2006).
[PubMed]

Laser Light Ophtalmology (1)

M. H. Niemz, T. Hoppeler, T. Juhasz, and J. F. Bille, "Intrastromal ablations for refractive corneal surgery using picosecond infrared laser pulses," Laser Light Ophtalmology 5, 145-152 (1993).

Ophthalmology Clinics of North America (1)

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, "Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation," Ophthalmology Clinics of North America 14, 347-355 (2001).
[PubMed]

Opt. Commun. (1)

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Phys. Fluids (1)

R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, "A new quotidian equation of state (QEOS) for hot dense matter," Phys. Fluids 31, 3059-3078 (1988).
[CrossRef]

Phys. Rev. B (2)

D. Arnold, E. Cartier, and D. J. DiMaria, "Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide," Phys. Rev. B 45, 1477-1480 (1992).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond to femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Phys. Rev. E (1)

K. B. Wharton, C. D. Boley, A. M. Rubenchik, J. Z. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, "Effect of nonionizing prepulses in high-intensity laser-solid interactions," Phys. Rev. E 64, 025401(R) (2001).
[CrossRef]

Phys. Rev. Lett. (2)

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, and G. Mourou, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

Proc. SPIE (1)

G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).

Rev. Sci. Instrum. (1)

J. A. Squier and M. Muller, "High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging," Rev. Sci. Instrum. 72, 2855-2867 (2001).
[CrossRef]

Other (3)

R. W. P. McWhirter, "Spectral intensities," in Plasma Diagnostics Techniques, R.H.Huddlestone and S.L.Leonards, eds. (Academic, 1965).

E. P. Ippen and C. V. Shank, "Techniques for measurement," in Ultrashort Light Pulses, S.L.Shapiro, ed. (Springer, 1984).

D. Bäuerle, Laser Processing and Chemistry (Springer, 2000), Chap. 13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: λ 2 , half-wave-plate; P, polarizer; BS, beam splitter; E, energy detector; M, mirror; Ob, microscope objective; S, sample; T, translation stage.

Fig. 2
Fig. 2

(a) Crater area as a function of the laser fluence for fused-silica sample and pulse duration of 100 fs . (b) Ablation threshold as a function of the pulse duration for fused silica.

Fig. 3
Fig. 3

Visible craters on stroma sample for a pulse duration of 500 fs and a Gaussian laser focal spot of 8 μ m at 1 e 2 . Laser shots were aligned parallel to the dashed line and are numbered from 1 to 6 with fluences (in J cm 2 ): 2.60, 2.64, 2.62, 2.51, 1.62, and 2.45, respectively. Craters are visible for all shots except shot number 5, which is below visible damage threshold.

Fig. 4
Fig. 4

Mean ablation threshold fluence values as a function of pulse duration for the corneal layers.

Fig. 5
Fig. 5

Fit of the model parameters and experimental data for the ablation threshold obtained for silica.

Fig. 6
Fig. 6

Fits of the model parameters and experimental data for the ablation threshold obtained for corneal (a) epithelium and (b) stroma.

Tables (1)

Tables Icon

Table 1 Parameters Used in the Model

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d n e d t = σ K I K + n e S ( T e ) ,
C e d T e d t = n e σ ( τ m ) I U i n e S ( T e ) C e ( T e T b ) τ E ,
C i d T b d t = C e ( T e T b ) τ E .
S = 10 5 n b ( T e U i ) 1 2 U i 3 2 ( 6 + T e U i ) exp ( U i T e )
σ = k ω τ m n 0 2 n c ( 1 + ω 2 τ m 2 ) ,

Metrics