Abstract

The effect of increased high-order wavefront aberrations on image resolution was investigated, and the performance of adaptive optics (AO) for correcting wavefront error in the presence of increased light scatter was assessed in a model eye. An AO section imaging system provided an oblique view of a model retina and incorporated a wavefront sensor and deformable mirror for measurement and compensation of wavefront aberrations. Image resolution was quantified by the width of a Lorentzian curve fitted to a laser line image. Wavefront aberrations were significantly reduced with AO, resulting in improvement of image resolution. In the model eye, image resolution was degraded with increased high-order wavefront aberrations (horizontal coma and spherical) and improved with AO correction of wavefront error in the presence of increased light scatter. The findings of the current study suggest that AO imaging systems can potentially improve image resolution in aging eyes with increased aberrations and scatter.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Artal, E. Berrio, A. Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations with age," J. Opt. Soc. Am. A 19, 137-143 (2002).
    [CrossRef]
  2. R. I. Calver, M. J. Cox, and D. B. Elliott, "Effect of aging on the monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 16, 2069-2078 (1999).
    [CrossRef]
  3. G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001).
    [CrossRef] [PubMed]
  4. T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, "Age-related changes in ocular and corneal aberrations," Am. J. Ophthalmol. 138, 143-146 (2004).
    [CrossRef] [PubMed]
  5. T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, "Wavefront analysis in eyes with nuclear or cortical cataract," Am. J. Ophthalmol. 134, 1-9 (2002).
    [CrossRef] [PubMed]
  6. F. Diaz-Douton, A. Benito, J. Pujol, M. Ariona, J. L. Guell, and P. Artal, "Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument," Invest. Ophthalmol. Visual Sci. 47, 1710-1716 (2006).
    [CrossRef]
  7. J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, and P. T. de Jong, "The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation," Vision Res. 30, 699-707 (1990).
    [CrossRef] [PubMed]
  8. T. J. van den Berg, "Analysis of intraocular straylight, especially in relation to age," Optom. Vision Sci. 72, 52-59 (1995).
    [CrossRef]
  9. T. J. van den Berg and J. K. Ijspeert, "Clinical assessment of intraocular straylight," Appl. Opt. 31, 3694-3696 (1992).
    [CrossRef] [PubMed]
  10. A. S. Rajagopalan, M. Shahidi, K. R. Alexander, G. A. Fishman, and R. Zelkha, "Higher-order wavefront aberrations in retinitis pigmentosa," Optom. Vision Sci. 82, 623-628 (2005).
    [CrossRef]
  11. M. Shahidi, Y. Yang, A. S. Rajagopalan, K. R. Alexander, G. A. Fishman, and R. Zelkha, "A method for differentiating higher order aberrations and light scatter applied to retinitis pigmentosa," Optom. Vision Sci. 82, 976-980 (2005).
    [CrossRef]
  12. M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, "Optical section retinal imaging and wavefront sensing in diabetes," Optom. Vision Sci. 81, 778-784 (2004).
    [CrossRef]
  13. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
    [CrossRef]
  14. C. Jiang, W. Wang, N. Ling, G. Xu, X. Rao, X. Li, and Y. Zhang, "High-resolution imaging of living retina through optic adaptive retinal imaging system," Yan Ke Xue Bao 18, 131-135 (2002).
  15. P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, and D. R. Williams, "Adaptive optics for vision: the eye's adaptation to point spread function," J. Refract. Surg. 19, S585-587 (2003).
    [PubMed]
  16. D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, "Images of cone photoreceptors in the living human eye," Vision Res. 36, 1067-1079 (1996).
    [CrossRef] [PubMed]
  17. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, "Functional consequences of the relative numbers of L and M cones," J. Opt. Soc. Am. A 17, 607-614 (2000).
    [CrossRef]
  18. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, "Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness," Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
    [CrossRef] [PubMed]
  19. A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Visual Sci. 44, 4580-4592 (2003).
    [CrossRef]
  20. A. Roorda and D. R. Williams, "The arrangement of the three cone classes in the living human eye," Nature 397, 520-522 (1999).
    [CrossRef] [PubMed]
  21. A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vision 2, 404-412 (2002).
    [CrossRef]
  22. J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, "High-resolution retinal imaging of cone-rod dystrophy," Ophthalmology 113, 1014-1019 (2006).
    [CrossRef]
  23. J. A. Martin and A. Roorda, "Direct and noninvasive assessment of parafoveal capillary leukocyte velocity," Ophthalmology 112, 2219-2224 (2005).
    [CrossRef]
  24. F. Romero-Borja, K. Venkateswaran, A. Roorda, and T. Hebert, "Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope," Appl. Opt. 44, 4032-4040 (2005).
    [CrossRef]
  25. A. Roorda, F. Romero-Borja, and W. J. Donnelly, III, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
  26. Y. Zhang, S. Poonja, and A. Roorda, "MEMS-based adaptive optics scanning laser ophthalmoscope," Opt. Lett. 31, 1268-1270 (2006).
    [CrossRef]
  27. D. Huang and M. Arif, "Spot size and quality of scanning laser correction of higher-order wavefront aberrations," J. Cataract Refractive Surg. 28, 407-416 (2002).
    [CrossRef]
  28. K. Venkateswaran, A. Roorda, and F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004).
    [CrossRef] [PubMed]
  29. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
    [CrossRef] [PubMed]
  30. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
    [CrossRef] [PubMed]
  31. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
    [CrossRef] [PubMed]
  32. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006).
    [CrossRef] [PubMed]
  33. M. Shahidi, M. Mori, and R. Zelkha, "A method for three-dimensional imaging of the retina in human eyes," Ophthalmic Surg. Lasers Imaging 38, 35-42 (2007).
  34. J. Kiryu, Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Enhanced visualization of vitreoretinal interface by laser biomicroscopy," Ophthalmology 100, 1040-1043 (1993).
    [PubMed]
  35. Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Improved visualization of macular hole lesions with laser biomicroscopy," Arch. Ophthalmol. (Chicago) 109, 957-961 (1991).
  36. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  37. R. C. Zeimer and M. T. Mori, "An interactive model eye for use with ophthalmic instruments," Arch. Ophthalmol. (Chicago) 106, 126-127 (1988).
  38. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-660 (2002).
    [PubMed]
  39. M. C. Campbell, E. M. Harrison, and P. Simonet, "Psychophysical measurement of the blur on the retina due to optical aberrations of the eye," Vision Res. 30, 1587-1602 (1990).
    [CrossRef] [PubMed]
  40. J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
    [CrossRef] [PubMed]
  41. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
    [CrossRef]
  42. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
    [CrossRef]
  43. F. C. Delori and S. A. Burns, "Fundus reflectance and the measurement of crystalline lens density," J. Opt. Soc. Am. A 13, 215-226 (1996).
    [CrossRef]
  44. R. A. Weale, "Age and the transmittance of the human crystalline lens," J. Physiol. (London) 395, 577-587 (1988).
  45. L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, "Image metrics for predicting subjective image quality," Optom. Vision Sci. 82, 358-369 (2005).
    [CrossRef]
  46. M. J. Cox, D. A. Atchison, and D. H. Scott, "Scatter and its implications for the measurement of optical image quality in human eyes," Optom. Vision Sci. 80, 58-68 (2003).
    [CrossRef]

2007 (1)

M. Shahidi, M. Mori, and R. Zelkha, "A method for three-dimensional imaging of the retina in human eyes," Ophthalmic Surg. Lasers Imaging 38, 35-42 (2007).

2006 (4)

F. Diaz-Douton, A. Benito, J. Pujol, M. Ariona, J. L. Guell, and P. Artal, "Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument," Invest. Ophthalmol. Visual Sci. 47, 1710-1716 (2006).
[CrossRef]

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, "High-resolution retinal imaging of cone-rod dystrophy," Ophthalmology 113, 1014-1019 (2006).
[CrossRef]

Y. Zhang, S. Poonja, and A. Roorda, "MEMS-based adaptive optics scanning laser ophthalmoscope," Opt. Lett. 31, 1268-1270 (2006).
[CrossRef]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006).
[CrossRef] [PubMed]

2005 (6)

F. Romero-Borja, K. Venkateswaran, A. Roorda, and T. Hebert, "Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope," Appl. Opt. 44, 4032-4040 (2005).
[CrossRef]

J. A. Martin and A. Roorda, "Direct and noninvasive assessment of parafoveal capillary leukocyte velocity," Ophthalmology 112, 2219-2224 (2005).
[CrossRef]

A. S. Rajagopalan, M. Shahidi, K. R. Alexander, G. A. Fishman, and R. Zelkha, "Higher-order wavefront aberrations in retinitis pigmentosa," Optom. Vision Sci. 82, 623-628 (2005).
[CrossRef]

M. Shahidi, Y. Yang, A. S. Rajagopalan, K. R. Alexander, G. A. Fishman, and R. Zelkha, "A method for differentiating higher order aberrations and light scatter applied to retinitis pigmentosa," Optom. Vision Sci. 82, 976-980 (2005).
[CrossRef]

L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, "Image metrics for predicting subjective image quality," Optom. Vision Sci. 82, 358-369 (2005).
[CrossRef]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

2004 (6)

K. Venkateswaran, A. Roorda, and F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004).
[CrossRef] [PubMed]

M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, "Optical section retinal imaging and wavefront sensing in diabetes," Optom. Vision Sci. 81, 778-784 (2004).
[CrossRef]

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, "Age-related changes in ocular and corneal aberrations," Am. J. Ophthalmol. 138, 143-146 (2004).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, "Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness," Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

2003 (3)

A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Visual Sci. 44, 4580-4592 (2003).
[CrossRef]

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, and D. R. Williams, "Adaptive optics for vision: the eye's adaptation to point spread function," J. Refract. Surg. 19, S585-587 (2003).
[PubMed]

M. J. Cox, D. A. Atchison, and D. H. Scott, "Scatter and its implications for the measurement of optical image quality in human eyes," Optom. Vision Sci. 80, 58-68 (2003).
[CrossRef]

2002 (9)

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vision 2, 404-412 (2002).
[CrossRef]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-660 (2002).
[PubMed]

D. Huang and M. Arif, "Spot size and quality of scanning laser correction of higher-order wavefront aberrations," J. Cataract Refractive Surg. 28, 407-416 (2002).
[CrossRef]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, "Wavefront analysis in eyes with nuclear or cortical cataract," Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

C. Jiang, W. Wang, N. Ling, G. Xu, X. Rao, X. Li, and Y. Zhang, "High-resolution imaging of living retina through optic adaptive retinal imaging system," Yan Ke Xue Bao 18, 131-135 (2002).

P. Artal, E. Berrio, A. Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations with age," J. Opt. Soc. Am. A 19, 137-143 (2002).
[CrossRef]

A. Roorda, F. Romero-Borja, and W. J. Donnelly, III, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

2001 (2)

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

R. I. Calver, M. J. Cox, and D. B. Elliott, "Effect of aging on the monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 16, 2069-2078 (1999).
[CrossRef]

A. Roorda and D. R. Williams, "The arrangement of the three cone classes in the living human eye," Nature 397, 520-522 (1999).
[CrossRef] [PubMed]

1997 (1)

1996 (2)

F. C. Delori and S. A. Burns, "Fundus reflectance and the measurement of crystalline lens density," J. Opt. Soc. Am. A 13, 215-226 (1996).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, "Images of cone photoreceptors in the living human eye," Vision Res. 36, 1067-1079 (1996).
[CrossRef] [PubMed]

1995 (1)

T. J. van den Berg, "Analysis of intraocular straylight, especially in relation to age," Optom. Vision Sci. 72, 52-59 (1995).
[CrossRef]

1993 (1)

J. Kiryu, Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Enhanced visualization of vitreoretinal interface by laser biomicroscopy," Ophthalmology 100, 1040-1043 (1993).
[PubMed]

1992 (1)

1991 (1)

Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Improved visualization of macular hole lesions with laser biomicroscopy," Arch. Ophthalmol. (Chicago) 109, 957-961 (1991).

1990 (2)

M. C. Campbell, E. M. Harrison, and P. Simonet, "Psychophysical measurement of the blur on the retina due to optical aberrations of the eye," Vision Res. 30, 1587-1602 (1990).
[CrossRef] [PubMed]

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, and P. T. de Jong, "The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation," Vision Res. 30, 699-707 (1990).
[CrossRef] [PubMed]

1988 (2)

R. C. Zeimer and M. T. Mori, "An interactive model eye for use with ophthalmic instruments," Arch. Ophthalmol. (Chicago) 106, 126-127 (1988).

R. A. Weale, "Age and the transmittance of the human crystalline lens," J. Physiol. (London) 395, 577-587 (1988).

Alexander, K. R.

A. S. Rajagopalan, M. Shahidi, K. R. Alexander, G. A. Fishman, and R. Zelkha, "Higher-order wavefront aberrations in retinitis pigmentosa," Optom. Vision Sci. 82, 623-628 (2005).
[CrossRef]

M. Shahidi, Y. Yang, A. S. Rajagopalan, K. R. Alexander, G. A. Fishman, and R. Zelkha, "A method for differentiating higher order aberrations and light scatter applied to retinitis pigmentosa," Optom. Vision Sci. 82, 976-980 (2005).
[CrossRef]

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-660 (2002).
[PubMed]

Arif, M.

D. Huang and M. Arif, "Spot size and quality of scanning laser correction of higher-order wavefront aberrations," J. Cataract Refractive Surg. 28, 407-416 (2002).
[CrossRef]

Ariona, M.

F. Diaz-Douton, A. Benito, J. Pujol, M. Ariona, J. L. Guell, and P. Artal, "Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument," Invest. Ophthalmol. Visual Sci. 47, 1710-1716 (2006).
[CrossRef]

Artal, P.

F. Diaz-Douton, A. Benito, J. Pujol, M. Ariona, J. L. Guell, and P. Artal, "Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument," Invest. Ophthalmol. Visual Sci. 47, 1710-1716 (2006).
[CrossRef]

B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, and D. R. Williams, "Adaptive optics for vision: the eye's adaptation to point spread function," J. Refract. Surg. 19, S585-587 (2003).
[PubMed]

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

P. Artal, E. Berrio, A. Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations with age," J. Opt. Soc. Am. A 19, 137-143 (2002).
[CrossRef]

Atchison, D. A.

M. J. Cox, D. A. Atchison, and D. H. Scott, "Scatter and its implications for the measurement of optical image quality in human eyes," Optom. Vision Sci. 80, 58-68 (2003).
[CrossRef]

Benito, A.

F. Diaz-Douton, A. Benito, J. Pujol, M. Ariona, J. L. Guell, and P. Artal, "Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument," Invest. Ophthalmol. Visual Sci. 47, 1710-1716 (2006).
[CrossRef]

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Berrio, E.

Blair, N. P.

M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, "Optical section retinal imaging and wavefront sensing in diabetes," Optom. Vision Sci. 81, 778-784 (2004).
[CrossRef]

J. Kiryu, Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Enhanced visualization of vitreoretinal interface by laser biomicroscopy," Ophthalmology 100, 1040-1043 (1993).
[PubMed]

Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Improved visualization of macular hole lesions with laser biomicroscopy," Arch. Ophthalmol. (Chicago) 109, 957-961 (1991).

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Bouma, B. E.

Bradley, A.

Brainard, D. H.

Burns, S. A.

Calderone, J. B.

Calver, R.

G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001).
[CrossRef] [PubMed]

Calver, R. I.

Campbell, M. C.

M. C. Campbell, E. M. Harrison, and P. Simonet, "Psychophysical measurement of the blur on the retina due to optical aberrations of the eye," Vision Res. 30, 1587-1602 (1990).
[CrossRef] [PubMed]

Carroll, J.

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, "High-resolution retinal imaging of cone-rod dystrophy," Ophthalmology 113, 1014-1019 (2006).
[CrossRef]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, "Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness," Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
[CrossRef] [PubMed]

Castejon-Mochon, J. F.

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Cense, B.

Chen, L.

L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, "Image metrics for predicting subjective image quality," Optom. Vision Sci. 82, 358-369 (2005).
[CrossRef]

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, and D. R. Williams, "Adaptive optics for vision: the eye's adaptation to point spread function," J. Refract. Surg. 19, S585-587 (2003).
[PubMed]

Chen, T. C.

Cheng, X.

Chung, M.

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, "High-resolution retinal imaging of cone-rod dystrophy," Ophthalmology 113, 1014-1019 (2006).
[CrossRef]

Cox, I. G.

Cox, M. J.

M. J. Cox, D. A. Atchison, and D. H. Scott, "Scatter and its implications for the measurement of optical image quality in human eyes," Optom. Vision Sci. 80, 58-68 (2003).
[CrossRef]

G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001).
[CrossRef] [PubMed]

R. I. Calver, M. J. Cox, and D. B. Elliott, "Effect of aging on the monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 16, 2069-2078 (1999).
[CrossRef]

de Boer, J. F.

de Jong, P. T.

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, and P. T. de Jong, "The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation," Vision Res. 30, 699-707 (1990).
[CrossRef] [PubMed]

de Waard, P. W.

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, and P. T. de Jong, "The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation," Vision Res. 30, 699-707 (1990).
[CrossRef] [PubMed]

Delori, F. C.

Diaz-Douton, F.

F. Diaz-Douton, A. Benito, J. Pujol, M. Ariona, J. L. Guell, and P. Artal, "Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument," Invest. Ophthalmol. Visual Sci. 47, 1710-1716 (2006).
[CrossRef]

Donnelly, W. J.

Drexler, W.

Duker, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Elliott, D. B.

Fercher, A. F.

Fernandez, E. J.

B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, and D. R. Williams, "Adaptive optics for vision: the eye's adaptation to point spread function," J. Refract. Surg. 19, S585-587 (2003).
[PubMed]

Fishman, G. A.

M. Shahidi, Y. Yang, A. S. Rajagopalan, K. R. Alexander, G. A. Fishman, and R. Zelkha, "A method for differentiating higher order aberrations and light scatter applied to retinitis pigmentosa," Optom. Vision Sci. 82, 976-980 (2005).
[CrossRef]

A. S. Rajagopalan, M. Shahidi, K. R. Alexander, G. A. Fishman, and R. Zelkha, "Higher-order wavefront aberrations in retinitis pigmentosa," Optom. Vision Sci. 82, 623-628 (2005).
[CrossRef]

Fujikado, T.

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, "Age-related changes in ocular and corneal aberrations," Am. J. Ophthalmol. 138, 143-146 (2004).
[CrossRef] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, "Wavefront analysis in eyes with nuclear or cortical cataract," Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

Fujimoto, J. G.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Gao, W.

Garner, L. F.

G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001).
[CrossRef] [PubMed]

Guell, J. L.

F. Diaz-Douton, A. Benito, J. Pujol, M. Ariona, J. L. Guell, and P. Artal, "Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument," Invest. Ophthalmol. Visual Sci. 47, 1710-1716 (2006).
[CrossRef]

Guirao, A.

Harrison, E. M.

M. C. Campbell, E. M. Harrison, and P. Simonet, "Psychophysical measurement of the blur on the retina due to optical aberrations of the eye," Vision Res. 30, 1587-1602 (1990).
[CrossRef] [PubMed]

Hebert, T.

Hermann, B.

Hirohara, Y.

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, "Age-related changes in ocular and corneal aberrations," Am. J. Ophthalmol. 138, 143-146 (2004).
[CrossRef] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, "Wavefront analysis in eyes with nuclear or cortical cataract," Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

Hofer, H.

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, "Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness," Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
[CrossRef] [PubMed]

A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Visual Sci. 44, 4580-4592 (2003).
[CrossRef]

Hong, X.

Huang, D.

D. Huang and M. Arif, "Spot size and quality of scanning laser correction of higher-order wavefront aberrations," J. Cataract Refractive Surg. 28, 407-416 (2002).
[CrossRef]

Ijspeert, J. K.

T. J. van den Berg and J. K. Ijspeert, "Clinical assessment of intraocular straylight," Appl. Opt. 31, 3694-3696 (1992).
[CrossRef] [PubMed]

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, and P. T. de Jong, "The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation," Vision Res. 30, 699-707 (1990).
[CrossRef] [PubMed]

Jacobs, G. H.

Jiang, C.

C. Jiang, W. Wang, N. Ling, G. Xu, X. Rao, X. Li, and Y. Zhang, "High-resolution imaging of living retina through optic adaptive retinal imaging system," Yan Ke Xue Bao 18, 131-135 (2002).

Jones, S.

Jonnal, R. S.

Kiryu, J.

J. Kiryu, Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Enhanced visualization of vitreoretinal interface by laser biomicroscopy," Ophthalmology 100, 1040-1043 (1993).
[PubMed]

Ko, T.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Kuroda, T.

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, "Age-related changes in ocular and corneal aberrations," Am. J. Ophthalmol. 138, 143-146 (2004).
[CrossRef] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, "Wavefront analysis in eyes with nuclear or cortical cataract," Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

Li, X.

C. Jiang, W. Wang, N. Ling, G. Xu, X. Rao, X. Li, and Y. Zhang, "High-resolution imaging of living retina through optic adaptive retinal imaging system," Yan Ke Xue Bao 18, 131-135 (2002).

Liang, J.

J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, "Images of cone photoreceptors in the living human eye," Vision Res. 36, 1067-1079 (1996).
[CrossRef] [PubMed]

Ling, N.

C. Jiang, W. Wang, N. Ling, G. Xu, X. Rao, X. Li, and Y. Zhang, "High-resolution imaging of living retina through optic adaptive retinal imaging system," Yan Ke Xue Bao 18, 131-135 (2002).

Lopez-Gil, N.

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Maeda, N.

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, "Age-related changes in ocular and corneal aberrations," Am. J. Ophthalmol. 138, 143-146 (2004).
[CrossRef] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, "Wavefront analysis in eyes with nuclear or cortical cataract," Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

Manzanera, S.

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, and D. R. Williams, "Adaptive optics for vision: the eye's adaptation to point spread function," J. Refract. Surg. 19, S585-587 (2003).
[PubMed]

Martin, J. A.

J. A. Martin and A. Roorda, "Direct and noninvasive assessment of parafoveal capillary leukocyte velocity," Ophthalmology 112, 2219-2224 (2005).
[CrossRef]

Metha, A.

Mihashi, T.

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, "Age-related changes in ocular and corneal aberrations," Am. J. Ophthalmol. 138, 143-146 (2004).
[CrossRef] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, "Wavefront analysis in eyes with nuclear or cortical cataract," Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

Miller, D. T.

Mori, M.

M. Shahidi, M. Mori, and R. Zelkha, "A method for three-dimensional imaging of the retina in human eyes," Ophthalmic Surg. Lasers Imaging 38, 35-42 (2007).

M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, "Optical section retinal imaging and wavefront sensing in diabetes," Optom. Vision Sci. 81, 778-784 (2004).
[CrossRef]

Mori, M. T.

J. Kiryu, Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Enhanced visualization of vitreoretinal interface by laser biomicroscopy," Ophthalmology 100, 1040-1043 (1993).
[PubMed]

Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Improved visualization of macular hole lesions with laser biomicroscopy," Arch. Ophthalmol. (Chicago) 109, 957-961 (1991).

R. C. Zeimer and M. T. Mori, "An interactive model eye for use with ophthalmic instruments," Arch. Ophthalmol. (Chicago) 106, 126-127 (1988).

Morris, G. M.

D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, "Images of cone photoreceptors in the living human eye," Vision Res. 36, 1067-1079 (1996).
[CrossRef] [PubMed]

Nassif, N.

Neitz, J.

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, "Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness," Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
[CrossRef] [PubMed]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, "Functional consequences of the relative numbers of L and M cones," J. Opt. Soc. Am. A 17, 607-614 (2000).
[CrossRef]

Neitz, M.

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, "Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness," Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
[CrossRef] [PubMed]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, "Functional consequences of the relative numbers of L and M cones," J. Opt. Soc. Am. A 17, 607-614 (2000).
[CrossRef]

Ninomiya, S.

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, "Age-related changes in ocular and corneal aberrations," Am. J. Ophthalmol. 138, 143-146 (2004).
[CrossRef] [PubMed]

Ogura, Y.

J. Kiryu, Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Enhanced visualization of vitreoretinal interface by laser biomicroscopy," Ophthalmology 100, 1040-1043 (1993).
[PubMed]

Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Improved visualization of macular hole lesions with laser biomicroscopy," Arch. Ophthalmol. (Chicago) 109, 957-961 (1991).

Olivier, S.

Oshika, T.

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, "Age-related changes in ocular and corneal aberrations," Am. J. Ophthalmol. 138, 143-146 (2004).
[CrossRef] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, "Wavefront analysis in eyes with nuclear or cortical cataract," Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

Pallikaris, A.

A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Visual Sci. 44, 4580-4592 (2003).
[CrossRef]

Park, B. H.

Piers, P.

Poonja, S.

Porter, J.

L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, "Image metrics for predicting subjective image quality," Optom. Vision Sci. 82, 358-369 (2005).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

Prieto, P. M.

Pujol, J.

F. Diaz-Douton, A. Benito, J. Pujol, M. Ariona, J. L. Guell, and P. Artal, "Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument," Invest. Ophthalmol. Visual Sci. 47, 1710-1716 (2006).
[CrossRef]

Rajagopalan, A. S.

A. S. Rajagopalan, M. Shahidi, K. R. Alexander, G. A. Fishman, and R. Zelkha, "Higher-order wavefront aberrations in retinitis pigmentosa," Optom. Vision Sci. 82, 623-628 (2005).
[CrossRef]

M. Shahidi, Y. Yang, A. S. Rajagopalan, K. R. Alexander, G. A. Fishman, and R. Zelkha, "A method for differentiating higher order aberrations and light scatter applied to retinitis pigmentosa," Optom. Vision Sci. 82, 976-980 (2005).
[CrossRef]

Rao, X.

C. Jiang, W. Wang, N. Ling, G. Xu, X. Rao, X. Li, and Y. Zhang, "High-resolution imaging of living retina through optic adaptive retinal imaging system," Yan Ke Xue Bao 18, 131-135 (2002).

Rha, J.

Romero-Borja, F.

Roorda, A.

Y. Zhang, S. Poonja, and A. Roorda, "MEMS-based adaptive optics scanning laser ophthalmoscope," Opt. Lett. 31, 1268-1270 (2006).
[CrossRef]

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, "High-resolution retinal imaging of cone-rod dystrophy," Ophthalmology 113, 1014-1019 (2006).
[CrossRef]

F. Romero-Borja, K. Venkateswaran, A. Roorda, and T. Hebert, "Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope," Appl. Opt. 44, 4032-4040 (2005).
[CrossRef]

J. A. Martin and A. Roorda, "Direct and noninvasive assessment of parafoveal capillary leukocyte velocity," Ophthalmology 112, 2219-2224 (2005).
[CrossRef]

K. Venkateswaran, A. Roorda, and F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, and W. J. Donnelly, III, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).

A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vision 2, 404-412 (2002).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, "Functional consequences of the relative numbers of L and M cones," J. Opt. Soc. Am. A 17, 607-614 (2000).
[CrossRef]

A. Roorda and D. R. Williams, "The arrangement of the three cone classes in the living human eye," Nature 397, 520-522 (1999).
[CrossRef] [PubMed]

Sattmann, H.

Schuman, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-660 (2002).
[PubMed]

Scott, D. H.

M. J. Cox, D. A. Atchison, and D. H. Scott, "Scatter and its implications for the measurement of optical image quality in human eyes," Optom. Vision Sci. 80, 58-68 (2003).
[CrossRef]

Shahidi, M.

M. Shahidi, M. Mori, and R. Zelkha, "A method for three-dimensional imaging of the retina in human eyes," Ophthalmic Surg. Lasers Imaging 38, 35-42 (2007).

A. S. Rajagopalan, M. Shahidi, K. R. Alexander, G. A. Fishman, and R. Zelkha, "Higher-order wavefront aberrations in retinitis pigmentosa," Optom. Vision Sci. 82, 623-628 (2005).
[CrossRef]

M. Shahidi, Y. Yang, A. S. Rajagopalan, K. R. Alexander, G. A. Fishman, and R. Zelkha, "A method for differentiating higher order aberrations and light scatter applied to retinitis pigmentosa," Optom. Vision Sci. 82, 976-980 (2005).
[CrossRef]

M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, "Optical section retinal imaging and wavefront sensing in diabetes," Optom. Vision Sci. 81, 778-784 (2004).
[CrossRef]

J. Kiryu, Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Enhanced visualization of vitreoretinal interface by laser biomicroscopy," Ophthalmology 100, 1040-1043 (1993).
[PubMed]

Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Improved visualization of macular hole lesions with laser biomicroscopy," Arch. Ophthalmol. (Chicago) 109, 957-961 (1991).

Simonet, P.

M. C. Campbell, E. M. Harrison, and P. Simonet, "Psychophysical measurement of the blur on the retina due to optical aberrations of the eye," Vision Res. 30, 1587-1602 (1990).
[CrossRef] [PubMed]

Singer, B.

L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, "Image metrics for predicting subjective image quality," Optom. Vision Sci. 82, 358-369 (2005).
[CrossRef]

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, and D. R. Williams, "Adaptive optics for vision: the eye's adaptation to point spread function," J. Refract. Surg. 19, S585-587 (2003).
[PubMed]

Smith, G.

G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001).
[CrossRef] [PubMed]

Srinivasan, V.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Tano, Y.

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, "Age-related changes in ocular and corneal aberrations," Am. J. Ophthalmol. 138, 143-146 (2004).
[CrossRef] [PubMed]

Tearney, G. J.

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-660 (2002).
[PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

Unterhuber, A.

van den Berg, T. J.

T. J. van den Berg, "Analysis of intraocular straylight, especially in relation to age," Optom. Vision Sci. 72, 52-59 (1995).
[CrossRef]

T. J. van den Berg and J. K. Ijspeert, "Clinical assessment of intraocular straylight," Appl. Opt. 31, 3694-3696 (1992).
[CrossRef] [PubMed]

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, and P. T. de Jong, "The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation," Vision Res. 30, 699-707 (1990).
[CrossRef] [PubMed]

Venkateswaran, K.

F. Romero-Borja, K. Venkateswaran, A. Roorda, and T. Hebert, "Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope," Appl. Opt. 44, 4032-4040 (2005).
[CrossRef]

K. Venkateswaran, A. Roorda, and F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004).
[CrossRef] [PubMed]

Wang, W.

C. Jiang, W. Wang, N. Ling, G. Xu, X. Rao, X. Li, and Y. Zhang, "High-resolution imaging of living retina through optic adaptive retinal imaging system," Yan Ke Xue Bao 18, 131-135 (2002).

Weale, R. A.

R. A. Weale, "Age and the transmittance of the human crystalline lens," J. Physiol. (London) 395, 577-587 (1988).

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-660 (2002).
[PubMed]

Werner, J. S.

Williams, D. R.

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, "High-resolution retinal imaging of cone-rod dystrophy," Ophthalmology 113, 1014-1019 (2006).
[CrossRef]

L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, "Image metrics for predicting subjective image quality," Optom. Vision Sci. 82, 358-369 (2005).
[CrossRef]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, "Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness," Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
[CrossRef] [PubMed]

A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Visual Sci. 44, 4580-4592 (2003).
[CrossRef]

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, and D. R. Williams, "Adaptive optics for vision: the eye's adaptation to point spread function," J. Refract. Surg. 19, S585-587 (2003).
[PubMed]

A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vision 2, 404-412 (2002).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, "Functional consequences of the relative numbers of L and M cones," J. Opt. Soc. Am. A 17, 607-614 (2000).
[CrossRef]

A. Roorda and D. R. Williams, "The arrangement of the three cone classes in the living human eye," Nature 397, 520-522 (1999).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, "Images of cone photoreceptors in the living human eye," Vision Res. 36, 1067-1079 (1996).
[CrossRef] [PubMed]

Wojtkowski, M.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Wolfing, J. I.

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, "High-resolution retinal imaging of cone-rod dystrophy," Ophthalmology 113, 1014-1019 (2006).
[CrossRef]

Xu, G.

C. Jiang, W. Wang, N. Ling, G. Xu, X. Rao, X. Li, and Y. Zhang, "High-resolution imaging of living retina through optic adaptive retinal imaging system," Yan Ke Xue Bao 18, 131-135 (2002).

Yamauchi, Y.

Yang, Y.

M. Shahidi, Y. Yang, A. S. Rajagopalan, K. R. Alexander, G. A. Fishman, and R. Zelkha, "A method for differentiating higher order aberrations and light scatter applied to retinitis pigmentosa," Optom. Vision Sci. 82, 976-980 (2005).
[CrossRef]

Yun, S. H.

Zawadzki, R. J.

Zeimer, R.

J. Kiryu, Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Enhanced visualization of vitreoretinal interface by laser biomicroscopy," Ophthalmology 100, 1040-1043 (1993).
[PubMed]

Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Improved visualization of macular hole lesions with laser biomicroscopy," Arch. Ophthalmol. (Chicago) 109, 957-961 (1991).

Zeimer, R. C.

R. C. Zeimer and M. T. Mori, "An interactive model eye for use with ophthalmic instruments," Arch. Ophthalmol. (Chicago) 106, 126-127 (1988).

Zelkha, R.

M. Shahidi, M. Mori, and R. Zelkha, "A method for three-dimensional imaging of the retina in human eyes," Ophthalmic Surg. Lasers Imaging 38, 35-42 (2007).

A. S. Rajagopalan, M. Shahidi, K. R. Alexander, G. A. Fishman, and R. Zelkha, "Higher-order wavefront aberrations in retinitis pigmentosa," Optom. Vision Sci. 82, 623-628 (2005).
[CrossRef]

M. Shahidi, Y. Yang, A. S. Rajagopalan, K. R. Alexander, G. A. Fishman, and R. Zelkha, "A method for differentiating higher order aberrations and light scatter applied to retinitis pigmentosa," Optom. Vision Sci. 82, 976-980 (2005).
[CrossRef]

M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, "Optical section retinal imaging and wavefront sensing in diabetes," Optom. Vision Sci. 81, 778-784 (2004).
[CrossRef]

Zhang, Y.

Am. J. Ophthalmol. (2)

T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, "Age-related changes in ocular and corneal aberrations," Am. J. Ophthalmol. 138, 143-146 (2004).
[CrossRef] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, "Wavefront analysis in eyes with nuclear or cortical cataract," Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

Appl. Opt. (2)

Arch. Ophthalmol. (Chicago) (2)

Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Improved visualization of macular hole lesions with laser biomicroscopy," Arch. Ophthalmol. (Chicago) 109, 957-961 (1991).

R. C. Zeimer and M. T. Mori, "An interactive model eye for use with ophthalmic instruments," Arch. Ophthalmol. (Chicago) 106, 126-127 (1988).

Invest. Ophthalmol. Visual Sci. (2)

F. Diaz-Douton, A. Benito, J. Pujol, M. Ariona, J. L. Guell, and P. Artal, "Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument," Invest. Ophthalmol. Visual Sci. 47, 1710-1716 (2006).
[CrossRef]

A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Visual Sci. 44, 4580-4592 (2003).
[CrossRef]

J. Biomed. Opt. (1)

K. Venkateswaran, A. Roorda, and F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004).
[CrossRef] [PubMed]

J. Cataract Refractive Surg. (1)

D. Huang and M. Arif, "Spot size and quality of scanning laser correction of higher-order wavefront aberrations," J. Cataract Refractive Surg. 28, 407-416 (2002).
[CrossRef]

J. Opt. Soc. Am. A (7)

J. Physiol. (London) (1)

R. A. Weale, "Age and the transmittance of the human crystalline lens," J. Physiol. (London) 395, 577-587 (1988).

J. Refract. Surg. (2)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-660 (2002).
[PubMed]

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, and D. R. Williams, "Adaptive optics for vision: the eye's adaptation to point spread function," J. Refract. Surg. 19, S585-587 (2003).
[PubMed]

J. Vision (1)

A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vision 2, 404-412 (2002).
[CrossRef]

Nature (1)

A. Roorda and D. R. Williams, "The arrangement of the three cone classes in the living human eye," Nature 397, 520-522 (1999).
[CrossRef] [PubMed]

Ophthalmology (4)

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, "High-resolution retinal imaging of cone-rod dystrophy," Ophthalmology 113, 1014-1019 (2006).
[CrossRef]

J. A. Martin and A. Roorda, "Direct and noninvasive assessment of parafoveal capillary leukocyte velocity," Ophthalmology 112, 2219-2224 (2005).
[CrossRef]

J. Kiryu, Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Enhanced visualization of vitreoretinal interface by laser biomicroscopy," Ophthalmology 100, 1040-1043 (1993).
[PubMed]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Optom. Vision Sci. (6)

L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, "Image metrics for predicting subjective image quality," Optom. Vision Sci. 82, 358-369 (2005).
[CrossRef]

M. J. Cox, D. A. Atchison, and D. H. Scott, "Scatter and its implications for the measurement of optical image quality in human eyes," Optom. Vision Sci. 80, 58-68 (2003).
[CrossRef]

T. J. van den Berg, "Analysis of intraocular straylight, especially in relation to age," Optom. Vision Sci. 72, 52-59 (1995).
[CrossRef]

A. S. Rajagopalan, M. Shahidi, K. R. Alexander, G. A. Fishman, and R. Zelkha, "Higher-order wavefront aberrations in retinitis pigmentosa," Optom. Vision Sci. 82, 623-628 (2005).
[CrossRef]

M. Shahidi, Y. Yang, A. S. Rajagopalan, K. R. Alexander, G. A. Fishman, and R. Zelkha, "A method for differentiating higher order aberrations and light scatter applied to retinitis pigmentosa," Optom. Vision Sci. 82, 976-980 (2005).
[CrossRef]

M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, "Optical section retinal imaging and wavefront sensing in diabetes," Optom. Vision Sci. 81, 778-784 (2004).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, "Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness," Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004).
[CrossRef] [PubMed]

Vision Res. (5)

G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001).
[CrossRef] [PubMed]

D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, "Images of cone photoreceptors in the living human eye," Vision Res. 36, 1067-1079 (1996).
[CrossRef] [PubMed]

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, and P. T. de Jong, "The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation," Vision Res. 30, 699-707 (1990).
[CrossRef] [PubMed]

M. C. Campbell, E. M. Harrison, and P. Simonet, "Psychophysical measurement of the blur on the retina due to optical aberrations of the eye," Vision Res. 30, 1587-1602 (1990).
[CrossRef] [PubMed]

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Yan Ke Xue Bao (1)

C. Jiang, W. Wang, N. Ling, G. Xu, X. Rao, X. Li, and Y. Zhang, "High-resolution imaging of living retina through optic adaptive retinal imaging system," Yan Ke Xue Bao 18, 131-135 (2002).

Other (2)

M. Shahidi, M. Mori, and R. Zelkha, "A method for three-dimensional imaging of the retina in human eyes," Ophthalmic Surg. Lasers Imaging 38, 35-42 (2007).

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Principle of the retinal section imaging technique. An optical section image is generated by projecting a laser line onto the retina at an oblique angle and viewing the reflection and/or scattering of the laser light from the anterior and posterior retinal surfaces. Owing to the angle between the incident laser and the viewing axis, structures at various depths appear laterally displaced.

Fig. 2
Fig. 2

Schematic diagram of the AO retinal section imaging system. An optical section image was acquired while wavefront aberrations were measured by a Shack–Hartmann wavefront sensor. Wavefront error was corrected with the use of a deformable mirror (DM).

Fig. 3
Fig. 3

Schematic diagram of the model eye. The model eye contained a cornea, a lens consisting of a transparent glass cuvette, a vitreous cavity, and a transparent model retina.

Fig. 4
Fig. 4

A, Typical Shack–Hartmann image for a 6 mm pupil obtained in a model eye; B, measured root-mean-square (RMS) wavefront error for each Zernike order.

Fig. 5
Fig. 5

A, Typical AO-corrected section image acquired in a model eye. Light reflected/scattered from the anterior (left) and posterior (right) surfaces are depicted by vertical lines. In the upper-right portion of the section image, light returned from the posterior surface is obscured (black notch) owing to a tick mark on the model retina. Intensity profiles across the anterior line were derived from four areas identified by white rectangles. B, Typical intensity profile derived from one area in A fitted with a Lorentzian curve.

Fig. 6
Fig. 6

RMS wavefront error ( 6 mm pupil) for each Zernike order before (triangle) and after (rectangle) AO correction. The total RMS wavefront error before and after correction was 0.44 ± 0.02 and 0.07 ± 0.01 ( N = 11 ) μ m , respectively.

Fig. 7
Fig. 7

Section images acquired under a no-scatter condition: A, before AO correction; B, after AO correction. Section images acquired with a scattering particle concentration of 0.01% in the cuvette lens: C, before AO correction; D, after AO correction. The left and right vertical lines on each section image correspond to light returned from the anterior and posterior surfaces, respectively.

Fig. 8
Fig. 8

Relationship between the FWHM of the Lorentzian-fitted curve and the level of high-order aberrations: vertical coma (triangle), horizontal coma (circle), spherical (rectangle).

Fig. 9
Fig. 9

Typical SH images acquired in a model eye with a 6 mm pupil: A, under a no-scatter condition; B, with a scattering particle concentration of 0.01% in the cuvette lens. C, Relationship between the total RMS error and scattering particle concentration before (triangle) and after (rectangle) AO correction.

Fig. 10
Fig. 10

Relationship between the FWHM of the Lorentzian-fitted curve and the scattering particle concentration before (triangle) and after (rectangle) AO correction.

Tables (1)

Tables Icon

Table 1 Scattering Particle Concentrations (Weight/Volume) and the Corresponding Percent Light Transmission at a Wavelength of 532 nm

Metrics