Abstract

A method for calculating the propagation constants of allowed guided and leaky modes in multilayer planar waveguides is presented. We develop a two-way graph model to describe the tangential fields propagating in the waveguides. According to the special structure of the graph model, it is convenient to employ a topology scheme to derive analytical and closed-form dispersion equations for TE and TM modes. By comparing the dispersion equations formulated by series-expansion methods, approximation methods, and transfer-matrix methods, we find that the use of these equations for finding the eigenmodes has some benefits. First, this method can be easily employed to solve eigenmodes accurately in numerical computation without using series truncation. Second, the dispersion equations are exact. Moreover, all the eigenmodes can be determined according to the formulas without losing roots or causing numerical instability even for a waveguide with thick layers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription