Abstract

We present a fast and general iterative design method for both diffractive and nondiffractive two-dimensional optical elements. The method is based on a finite-thickness model in combination with the Yang–Gu phase-retrieval algorithm. A rigorous electromagnetic analysis (boundary element method) is used to appraise the designed results. We calculate the transverse-intensity distributions, diffraction efficiency, and spot size of the designed microlenses at the focusing plane for microlenses designed using the presented method and the conventional zero-thickness model. The main findings show the superiority of the presented method over the conventional method, especially for nondiffractive optical elements.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Applications of improved first Rayleigh–Sommerfeld method to analyze the performance of cylindrical microlenses with different f-numbers

Jia-Sheng Ye, Ben-Yuan Gu, Shu-Tian Liu, and Bi-Zhen Dong
J. Opt. Soc. Am. A 22(5) 862-869 (2005)

Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation

Elias N. Glytsis, Michael E. Harrigan, Koichi Hirayama, and Thomas K. Gaylord
Appl. Opt. 37(1) 34-43 (1998)

Analysis of a cylindrical microlens array with long focal depth by a rigorous boundary-element method and scalar approximations

Jia-Sheng Ye, Bi-Zhen Dong, Ben-Yuan Gu, and Shu-Tian Liu
Appl. Opt. 43(27) 5183-5192 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription