Abstract

We detail the development and implementation of a global ablation model that incorporates a dynamically changing tissue absorption coefficient. Detailed spectroscopic measurements rule out plasma-shielding effects during the laser–tissue interaction and thereby support a photochemical mechanism. The model predicts ablation rate behavior that agrees well with a variety of experimental ablation rate data and that substantially deviates from a static Beer–Lambert model. The dynamic model predicts an enhancement in the tissue absorption coefficient of about 25%–50% as compared with the initial, static value. In addition, the model predicts an increase in the tissue ablation rate as corneal hydration increases, which may provide additional insight into variations in refractive surgery outcome.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Paltauf and P. E. Dyer, "Photochemical processes and effects in ablation," Chem. Rev. (Washington, D.C.) 103, 487-518 (2003).
    [CrossRef]
  2. A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. (Washington, D.C.) 103, 577-644 (2003).
    [CrossRef]
  3. F. Manns, P. Milne, and J. M. Parel, "Ultraviolet corneal photoablation," J. Refract. Surg. 18, 1-5 (2002).
  4. G. H. Pettit and R. Sauerbrey, "Pulsed ultraviolet laser ablation," Appl. Phys. A 56, 51-63 (1993).
    [CrossRef]
  5. J. V. McGrann, J. Neev, and M. W. Berns, "Physical characteristics of excimer laser-tissue interactions," in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE 1646, 56-68 (1992).
  6. B. T. Fisher and D. W. Hahn, "Measurement of small-signal absorption coefficient and absorption cross section of collagen for 193-nm excimer laser light and the role of collagen in tissue ablation," Appl. Opt. 43, 5443-5451 (2004).
    [CrossRef] [PubMed]
  7. C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, and C. M. Adler, "Excimer laser ablation of the cornea and lens: experimental studies," Ophthalmology 92, 741-748 (1985).
    [PubMed]
  8. C. A. Puliafito, K. Wong, and R. F. Steinert, "Quantitative and ultrastructural studies of excimer laser ablation of the cornea at 193 and 248 nanometers," Lasers Surg. Med. 7, 155-159 (1987).
    [CrossRef] [PubMed]
  9. A. Lembares, X.-H. Hu, and G. W. Kalmus, "Absorption spectra of corneas in the far ultraviolet region," Invest. Ophthalmol. Visual Sci. 38, 1283-1387 (1997).
  10. Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, "Physical problems of excimer laser cornea ablation," Opt. Eng. 32, 2481-2486 (1993).
    [CrossRef]
  11. G. H. Pettit and M. N. Ediger, "Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation," Appl. Opt. 35, 3386-3391 (1996).
    [CrossRef] [PubMed]
  12. A. D. Yablon, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, "Measurement of tissue absorption coefficients by use of interferometric photothermal spectroscopy," Appl. Opt. 38, 1259-1272 (1999).
    [CrossRef]
  13. V. N. Tokarev, J. G. Lunney, W. Marine, and M. Sentis, "Analytical thermal model of ultraviolet laser ablation with single-photon absorption in the plume," J. Appl. Phys. 78, 1241-1246 (1995).
    [CrossRef]
  14. E. Sutcliffe and R. Srinivasan, "Dynamics of UV laser ablation of organic polymer surfaces," J. Appl. Phys. 60, 3315-3322 (1986).
    [CrossRef]
  15. R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid--details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromolecules 19, 916-921 (1986).
    [CrossRef]
  16. B. Lukyanchuk, N. Bityurin, S. Anisimov, N. Arnold, and D. Bauerle, "The role of excited species in ultraviolet-laser materials ablation. 3. Non-stationary ablation of organic polymers," Appl. Phys. A 62, 397-401 (1996).
    [CrossRef]
  17. J. R. Jimenez, R. G. Anera, and L. J. del Barco, "Equation for corneal asphericity after corneal refractive surgery," J. Refract. Surg. 19, 65-69 (2003).
    [PubMed]
  18. R. G. Anera, J. R. Jimenez, L. J. del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea," Opt. Lett. 28, 417-419 (2003).
    [CrossRef] [PubMed]
  19. J. R. Jimenez, R. G. Anera, L. J. del Barco, and E. Hita, "Influence of laser polarization on ocular refractive parameters after refractive surgery," Opt. Lett. 29, 962-964 (2004).
    [CrossRef] [PubMed]
  20. J. R. Jimenez, R. G. Anera, J. A. Diaz, and F. Perez-Ocon, "Corneal asphericity after refractive surgery when the Munnerlyn formula is applied," J. Opt. Soc. Am. A 21, 98-103 (2004).
    [CrossRef]
  21. J. R. Jimenez, R. G. Anera, L. J. del Barco, E. Hita, and F. Perez-Ocon, "Correction factor for ablation algorithms used in corneal refractive surgery with gaussian-profile beams," Opt. Express 13, 336-343 (2005).
    [CrossRef] [PubMed]
  22. J. R. Jimenez, F. Rodriguez-Matin, R. G. Anera, and L. J. del Barco, "Deviations of Lambert-Beer's law affect corneal refractive parameters after refractive surgery," Opt. Express 14, 5411-5417 (2006).
    [CrossRef] [PubMed]
  23. T. P. Hughes, Plasmas and Laser Light (Wiley, 1975).
  24. Y. B. Zel"dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, 2002).
  25. G. Bekefi, Principles of Laser Plasmas (Wiley, 1976).
  26. J. F. Ready, Effects of High-Power Laser Radiation (Academic, 1971).
  27. I. G. Pallikaris, H. S. Ginis, G. A. Kounis, D. Anglos, T. G. Papazoglou, and L. P. Naoumidis, "Corneal hydration monitored by laser-induced breakdown spectroscopy," J. Refract. Surg. 14, 655-660 (1998).
    [PubMed]
  28. L.J.Radziemski and D.A.Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, 1989).
  29. V. Hohreiter, J. E. Carranza, and D. W. Hahn, "Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy," Spectrochim. Acta, Part B 59, 327-333 (2004).
    [CrossRef]
  30. C. G. Parigger, D. H. Plemmons, and E. Oks, "Balmer series Hβ measurements in a laser-induced hydrogen plasma," Appl. Opt. 42, 5992-6000 (2003).
    [CrossRef] [PubMed]
  31. E. Oks, "A new spectroscopic effect resulting in a narrowing of hydrogen lines in dense plasmas," J. Quant. Spectrosc. Radiat. Transf. 65, 405-414 (2000).
    [CrossRef]
  32. J. D. Bradshaw, M. O. Rodgers, and D. D. Davis, "Single photon laser-induced fluorescence detection of NO and SO2 for atmospheric conditions of composition and pressure," Appl. Opt. 21, 2493-2500 (1982).
    [CrossRef] [PubMed]
  33. J. B. Simeonsson and R. C. Sausa, "A critical review of laser photofragmentation-fragment detection techniques for gas phase chemical analysis," Appl. Spectrosc. Rev. 31, 1-72 (1996).
    [CrossRef]
  34. M. H. Nunez, P. Cavalli, G. Petrucci, and N. Omenetto, "Analysis of sulfuric acid aerosols by laser-induced breakdown spectroscopy and laser-induced photofragmentation," Appl. Spectrosc. 54, 1805-1816 (2000).
    [CrossRef]
  35. M. H. Nunez and N. Omenetto, "Experimental investigation of sodium emission following laser photofragmentation of different sodium-containing aerosols," Appl. Spectrosc. 55, 809-815 (2001).
    [CrossRef]
  36. P. N. Prasad, Introduction to Biophotonics (Wiley, 2003).
    [CrossRef]
  37. M. N. Ediger, G. H. Pettit, R. P. Weiblinger, and C. H. Chen, "Transmission of corneal collagen during ArF excimer laser ablation," Lasers Surg. Med. 13, 204-210 (1993).
    [CrossRef] [PubMed]
  38. M. N. Ediger, G. H. Pettit, and R. P. Weiblinger, "Noninvasive monitoring of excimer laser ablation by time-resolved reflectometry," Refract. Corneal Surg. 9, 268-275 (1993).
    [PubMed]
  39. G. H. Pettit and M. N. Ediger, "Pump/probe transmission measurements of corneal tissue during excimer laser ablation," Lasers Surg. Med. 13, 363-367 (1993).
    [CrossRef] [PubMed]
  40. G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Dynamic optical properties of collagen-based tissue during ArF excimer laser ablation," Appl. Opt. 32, 488-493 (1993).
    [CrossRef] [PubMed]
  41. M. N. Ediger, G. H. Pettit, and D. W. Hahn, "Enhanced ArF laser absorption in a collagen target under ablative conditions," Lasers Surg. Med. 15, 107-111 (1994).
    [CrossRef] [PubMed]
  42. G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Excimer laser ablation of the cornea," Opt. Eng. 34, 661-667 (1995).
    [CrossRef]
  43. P. Simon, "Time-resolved ablation site photography of XeCl-laser irradiated polyimide," Appl. Phys. B 48, 253-256 (1989).
    [CrossRef]
  44. S. Lerman, Radiant Energy and the Eye (Macmillan, 1980).
  45. S. R. Turns, An Introduction to Combustion: Concepts and Applications (McGraw-Hill, 2000).
  46. P. Anfinrud, R. de Vivie-Riedle, and V. Engel, "Ultrafast detection and control of molecular dynamics," Proc. Natl. Acad. Sci. U.S.A. 96, 8328-8329 (1999).
    [CrossRef] [PubMed]
  47. B. T. Fisher and D. W. Hahn, "Determination of excimer laser ablation rates of corneal tissue using wax impressions of ablation craters and white-light interferometry," Ophthalmic Surg. Lasers Imaging 35, 41-51 (2004).
    [PubMed]
  48. D. S. Aron-Rosa, J. L. Boulnoy, F. Carre, J. Delacour, M. Gross, M. LaCour, J. C. Olivo, and J. C. Timsit, "Excimer laser surgery of the cornea: qualitative and quantitative aspects of photoablation according to the energy density," J. Cataract Refractive Surg. 12, 27-33 (1986).
  49. M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews, and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Visual Sci. 40, 826-830 (1999).
  50. M. Campos, X. W. Wang, L. Hertzog, M. Lee, T. Clapham, S. L. Trokel, and P. J. McDonnell, "Ablation rates and surface ultrastructure of 193nm excimer laser keratectomies," Invest. Ophthalmol. Visual Sci. 34, 2493-2500 (1993).
  51. F. E. Fantes and G. O. Waring, "Effect of excimer laser radiant exposure on uniformity of ablated corneal surface," Lasers Surg. Med. 9, 533-542 (1989).
    [CrossRef] [PubMed]
  52. H. J. Huebscher, U. Genth, and T. Seiler, "Determination of excimer laser ablation rate of the human cornea usingin vivo Scheimpflug videography," Invest. Ophthalmol. Visual Sci. 37, 42-46 (1996).
  53. M. S. Kitai, V. L. Popkov, V. A. Semchishen, and A. A. Kharizov, "The physics of UV laser cornea ablation," IEEE J. Quantum Electron. 27, 302-307 (1991).
    [CrossRef]
  54. R. R. Krueger and S. L. Trokel, "Quantitation of corneal ablation by ultraviolet laser light," Arch. Ophthalmol. (Chicago) 103, 1741-1742 (1985).
  55. P. P. Van Saarloos and I. J. Constable, "Bovine corneal stroma ablation rate with 193-nm excimer laser radiation: quantitative measurement," Refract. Corneal Surg. 6, 424-429 (1990).
    [PubMed]
  56. B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 363-370 (2003).
    [CrossRef] [PubMed]
  57. P. J. Dougherty, K. L. Wellish, and R. K. Maloney, "Excimer laser ablation rate and corneal hydration," Am. J. Ophthalmol. 118, 169-176 (1994).
    [PubMed]
  58. G. O. Waring, "Development of a system for excimer laser corneal surgery," Trans. Am. Ophthalmol. Soc. 87, 854-983 (1989).
    [PubMed]
  59. M. H. Feltham, M. Optom, and F. Stapleton, "The effect of water content on the 193nm excimer laser ablation," Clin. Exp. Ophthalmol. 30, 99-103 (2002).
    [CrossRef]

2006 (1)

2005 (1)

2004 (5)

2003 (6)

B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 363-370 (2003).
[CrossRef] [PubMed]

G. Paltauf and P. E. Dyer, "Photochemical processes and effects in ablation," Chem. Rev. (Washington, D.C.) 103, 487-518 (2003).
[CrossRef]

A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. (Washington, D.C.) 103, 577-644 (2003).
[CrossRef]

J. R. Jimenez, R. G. Anera, and L. J. del Barco, "Equation for corneal asphericity after corneal refractive surgery," J. Refract. Surg. 19, 65-69 (2003).
[PubMed]

R. G. Anera, J. R. Jimenez, L. J. del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea," Opt. Lett. 28, 417-419 (2003).
[CrossRef] [PubMed]

C. G. Parigger, D. H. Plemmons, and E. Oks, "Balmer series Hβ measurements in a laser-induced hydrogen plasma," Appl. Opt. 42, 5992-6000 (2003).
[CrossRef] [PubMed]

2002 (2)

F. Manns, P. Milne, and J. M. Parel, "Ultraviolet corneal photoablation," J. Refract. Surg. 18, 1-5 (2002).

M. H. Feltham, M. Optom, and F. Stapleton, "The effect of water content on the 193nm excimer laser ablation," Clin. Exp. Ophthalmol. 30, 99-103 (2002).
[CrossRef]

2001 (1)

2000 (2)

M. H. Nunez, P. Cavalli, G. Petrucci, and N. Omenetto, "Analysis of sulfuric acid aerosols by laser-induced breakdown spectroscopy and laser-induced photofragmentation," Appl. Spectrosc. 54, 1805-1816 (2000).
[CrossRef]

E. Oks, "A new spectroscopic effect resulting in a narrowing of hydrogen lines in dense plasmas," J. Quant. Spectrosc. Radiat. Transf. 65, 405-414 (2000).
[CrossRef]

1999 (3)

A. D. Yablon, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, "Measurement of tissue absorption coefficients by use of interferometric photothermal spectroscopy," Appl. Opt. 38, 1259-1272 (1999).
[CrossRef]

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews, and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Visual Sci. 40, 826-830 (1999).

P. Anfinrud, R. de Vivie-Riedle, and V. Engel, "Ultrafast detection and control of molecular dynamics," Proc. Natl. Acad. Sci. U.S.A. 96, 8328-8329 (1999).
[CrossRef] [PubMed]

1998 (1)

I. G. Pallikaris, H. S. Ginis, G. A. Kounis, D. Anglos, T. G. Papazoglou, and L. P. Naoumidis, "Corneal hydration monitored by laser-induced breakdown spectroscopy," J. Refract. Surg. 14, 655-660 (1998).
[PubMed]

1997 (1)

A. Lembares, X.-H. Hu, and G. W. Kalmus, "Absorption spectra of corneas in the far ultraviolet region," Invest. Ophthalmol. Visual Sci. 38, 1283-1387 (1997).

1996 (4)

G. H. Pettit and M. N. Ediger, "Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation," Appl. Opt. 35, 3386-3391 (1996).
[CrossRef] [PubMed]

J. B. Simeonsson and R. C. Sausa, "A critical review of laser photofragmentation-fragment detection techniques for gas phase chemical analysis," Appl. Spectrosc. Rev. 31, 1-72 (1996).
[CrossRef]

B. Lukyanchuk, N. Bityurin, S. Anisimov, N. Arnold, and D. Bauerle, "The role of excited species in ultraviolet-laser materials ablation. 3. Non-stationary ablation of organic polymers," Appl. Phys. A 62, 397-401 (1996).
[CrossRef]

H. J. Huebscher, U. Genth, and T. Seiler, "Determination of excimer laser ablation rate of the human cornea usingin vivo Scheimpflug videography," Invest. Ophthalmol. Visual Sci. 37, 42-46 (1996).

1995 (2)

G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Excimer laser ablation of the cornea," Opt. Eng. 34, 661-667 (1995).
[CrossRef]

V. N. Tokarev, J. G. Lunney, W. Marine, and M. Sentis, "Analytical thermal model of ultraviolet laser ablation with single-photon absorption in the plume," J. Appl. Phys. 78, 1241-1246 (1995).
[CrossRef]

1994 (2)

M. N. Ediger, G. H. Pettit, and D. W. Hahn, "Enhanced ArF laser absorption in a collagen target under ablative conditions," Lasers Surg. Med. 15, 107-111 (1994).
[CrossRef] [PubMed]

P. J. Dougherty, K. L. Wellish, and R. K. Maloney, "Excimer laser ablation rate and corneal hydration," Am. J. Ophthalmol. 118, 169-176 (1994).
[PubMed]

1993 (7)

M. Campos, X. W. Wang, L. Hertzog, M. Lee, T. Clapham, S. L. Trokel, and P. J. McDonnell, "Ablation rates and surface ultrastructure of 193nm excimer laser keratectomies," Invest. Ophthalmol. Visual Sci. 34, 2493-2500 (1993).

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, "Physical problems of excimer laser cornea ablation," Opt. Eng. 32, 2481-2486 (1993).
[CrossRef]

G. H. Pettit and R. Sauerbrey, "Pulsed ultraviolet laser ablation," Appl. Phys. A 56, 51-63 (1993).
[CrossRef]

M. N. Ediger, G. H. Pettit, R. P. Weiblinger, and C. H. Chen, "Transmission of corneal collagen during ArF excimer laser ablation," Lasers Surg. Med. 13, 204-210 (1993).
[CrossRef] [PubMed]

M. N. Ediger, G. H. Pettit, and R. P. Weiblinger, "Noninvasive monitoring of excimer laser ablation by time-resolved reflectometry," Refract. Corneal Surg. 9, 268-275 (1993).
[PubMed]

G. H. Pettit and M. N. Ediger, "Pump/probe transmission measurements of corneal tissue during excimer laser ablation," Lasers Surg. Med. 13, 363-367 (1993).
[CrossRef] [PubMed]

G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Dynamic optical properties of collagen-based tissue during ArF excimer laser ablation," Appl. Opt. 32, 488-493 (1993).
[CrossRef] [PubMed]

1991 (1)

M. S. Kitai, V. L. Popkov, V. A. Semchishen, and A. A. Kharizov, "The physics of UV laser cornea ablation," IEEE J. Quantum Electron. 27, 302-307 (1991).
[CrossRef]

1990 (1)

P. P. Van Saarloos and I. J. Constable, "Bovine corneal stroma ablation rate with 193-nm excimer laser radiation: quantitative measurement," Refract. Corneal Surg. 6, 424-429 (1990).
[PubMed]

1989 (3)

G. O. Waring, "Development of a system for excimer laser corneal surgery," Trans. Am. Ophthalmol. Soc. 87, 854-983 (1989).
[PubMed]

F. E. Fantes and G. O. Waring, "Effect of excimer laser radiant exposure on uniformity of ablated corneal surface," Lasers Surg. Med. 9, 533-542 (1989).
[CrossRef] [PubMed]

P. Simon, "Time-resolved ablation site photography of XeCl-laser irradiated polyimide," Appl. Phys. B 48, 253-256 (1989).
[CrossRef]

1987 (1)

C. A. Puliafito, K. Wong, and R. F. Steinert, "Quantitative and ultrastructural studies of excimer laser ablation of the cornea at 193 and 248 nanometers," Lasers Surg. Med. 7, 155-159 (1987).
[CrossRef] [PubMed]

1986 (3)

E. Sutcliffe and R. Srinivasan, "Dynamics of UV laser ablation of organic polymer surfaces," J. Appl. Phys. 60, 3315-3322 (1986).
[CrossRef]

R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid--details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromolecules 19, 916-921 (1986).
[CrossRef]

D. S. Aron-Rosa, J. L. Boulnoy, F. Carre, J. Delacour, M. Gross, M. LaCour, J. C. Olivo, and J. C. Timsit, "Excimer laser surgery of the cornea: qualitative and quantitative aspects of photoablation according to the energy density," J. Cataract Refractive Surg. 12, 27-33 (1986).

1985 (2)

R. R. Krueger and S. L. Trokel, "Quantitation of corneal ablation by ultraviolet laser light," Arch. Ophthalmol. (Chicago) 103, 1741-1742 (1985).

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, and C. M. Adler, "Excimer laser ablation of the cornea and lens: experimental studies," Ophthalmology 92, 741-748 (1985).
[PubMed]

1982 (1)

Adler, C. M.

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, and C. M. Adler, "Excimer laser ablation of the cornea and lens: experimental studies," Ophthalmology 92, 741-748 (1985).
[PubMed]

Andrews, J.

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews, and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Visual Sci. 40, 826-830 (1999).

Anera, R. G.

Anfinrud, P.

P. Anfinrud, R. de Vivie-Riedle, and V. Engel, "Ultrafast detection and control of molecular dynamics," Proc. Natl. Acad. Sci. U.S.A. 96, 8328-8329 (1999).
[CrossRef] [PubMed]

Anglos, D.

I. G. Pallikaris, H. S. Ginis, G. A. Kounis, D. Anglos, T. G. Papazoglou, and L. P. Naoumidis, "Corneal hydration monitored by laser-induced breakdown spectroscopy," J. Refract. Surg. 14, 655-660 (1998).
[PubMed]

Anisimov, S.

B. Lukyanchuk, N. Bityurin, S. Anisimov, N. Arnold, and D. Bauerle, "The role of excited species in ultraviolet-laser materials ablation. 3. Non-stationary ablation of organic polymers," Appl. Phys. A 62, 397-401 (1996).
[CrossRef]

Arnold, N.

B. Lukyanchuk, N. Bityurin, S. Anisimov, N. Arnold, and D. Bauerle, "The role of excited species in ultraviolet-laser materials ablation. 3. Non-stationary ablation of organic polymers," Appl. Phys. A 62, 397-401 (1996).
[CrossRef]

Aron-Rosa, D. S.

D. S. Aron-Rosa, J. L. Boulnoy, F. Carre, J. Delacour, M. Gross, M. LaCour, J. C. Olivo, and J. C. Timsit, "Excimer laser surgery of the cornea: qualitative and quantitative aspects of photoablation according to the energy density," J. Cataract Refractive Surg. 12, 27-33 (1986).

Bauerle, D.

B. Lukyanchuk, N. Bityurin, S. Anisimov, N. Arnold, and D. Bauerle, "The role of excited species in ultraviolet-laser materials ablation. 3. Non-stationary ablation of organic polymers," Appl. Phys. A 62, 397-401 (1996).
[CrossRef]

Bekefi, G.

G. Bekefi, Principles of Laser Plasmas (Wiley, 1976).

Berns, M. W.

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews, and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Visual Sci. 40, 826-830 (1999).

J. V. McGrann, J. Neev, and M. W. Berns, "Physical characteristics of excimer laser-tissue interactions," in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE 1646, 56-68 (1992).

Bityurin, N.

B. Lukyanchuk, N. Bityurin, S. Anisimov, N. Arnold, and D. Bauerle, "The role of excited species in ultraviolet-laser materials ablation. 3. Non-stationary ablation of organic polymers," Appl. Phys. A 62, 397-401 (1996).
[CrossRef]

Bor, Z.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, "Physical problems of excimer laser cornea ablation," Opt. Eng. 32, 2481-2486 (1993).
[CrossRef]

Boulnoy, J. L.

D. S. Aron-Rosa, J. L. Boulnoy, F. Carre, J. Delacour, M. Gross, M. LaCour, J. C. Olivo, and J. C. Timsit, "Excimer laser surgery of the cornea: qualitative and quantitative aspects of photoablation according to the energy density," J. Cataract Refractive Surg. 12, 27-33 (1986).

Bradshaw, J. D.

Braren, B.

R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid--details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromolecules 19, 916-921 (1986).
[CrossRef]

Campos, M.

M. Campos, X. W. Wang, L. Hertzog, M. Lee, T. Clapham, S. L. Trokel, and P. J. McDonnell, "Ablation rates and surface ultrastructure of 193nm excimer laser keratectomies," Invest. Ophthalmol. Visual Sci. 34, 2493-2500 (1993).

Carranza, J. E.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, "Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy," Spectrochim. Acta, Part B 59, 327-333 (2004).
[CrossRef]

Carre, F.

D. S. Aron-Rosa, J. L. Boulnoy, F. Carre, J. Delacour, M. Gross, M. LaCour, J. C. Olivo, and J. C. Timsit, "Excimer laser surgery of the cornea: qualitative and quantitative aspects of photoablation according to the energy density," J. Cataract Refractive Surg. 12, 27-33 (1986).

Cavalli, P.

Chao, L.

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews, and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Visual Sci. 40, 826-830 (1999).

Chen, C. H.

M. N. Ediger, G. H. Pettit, R. P. Weiblinger, and C. H. Chen, "Transmission of corneal collagen during ArF excimer laser ablation," Lasers Surg. Med. 13, 204-210 (1993).
[CrossRef] [PubMed]

Clapham, T.

M. Campos, X. W. Wang, L. Hertzog, M. Lee, T. Clapham, S. L. Trokel, and P. J. McDonnell, "Ablation rates and surface ultrastructure of 193nm excimer laser keratectomies," Invest. Ophthalmol. Visual Sci. 34, 2493-2500 (1993).

Constable, I. J.

P. P. Van Saarloos and I. J. Constable, "Bovine corneal stroma ablation rate with 193-nm excimer laser radiation: quantitative measurement," Refract. Corneal Surg. 6, 424-429 (1990).
[PubMed]

Davis, D. D.

de Vivie-Riedle, R.

P. Anfinrud, R. de Vivie-Riedle, and V. Engel, "Ultrafast detection and control of molecular dynamics," Proc. Natl. Acad. Sci. U.S.A. 96, 8328-8329 (1999).
[CrossRef] [PubMed]

Dehm, E. J.

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, and C. M. Adler, "Excimer laser ablation of the cornea and lens: experimental studies," Ophthalmology 92, 741-748 (1985).
[PubMed]

del Barco, L. J.

Delacour, J.

D. S. Aron-Rosa, J. L. Boulnoy, F. Carre, J. Delacour, M. Gross, M. LaCour, J. C. Olivo, and J. C. Timsit, "Excimer laser surgery of the cornea: qualitative and quantitative aspects of photoablation according to the energy density," J. Cataract Refractive Surg. 12, 27-33 (1986).

Deutsch, T. F.

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, and C. M. Adler, "Excimer laser ablation of the cornea and lens: experimental studies," Ophthalmology 92, 741-748 (1985).
[PubMed]

Diaz, J. A.

Dougherty, P. J.

P. J. Dougherty, K. L. Wellish, and R. K. Maloney, "Excimer laser ablation rate and corneal hydration," Am. J. Ophthalmol. 118, 169-176 (1994).
[PubMed]

Dreyfus, R. W.

R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid--details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromolecules 19, 916-921 (1986).
[CrossRef]

Dyer, P. E.

G. Paltauf and P. E. Dyer, "Photochemical processes and effects in ablation," Chem. Rev. (Washington, D.C.) 103, 487-518 (2003).
[CrossRef]

Ediger, M. N.

G. H. Pettit and M. N. Ediger, "Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation," Appl. Opt. 35, 3386-3391 (1996).
[CrossRef] [PubMed]

G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Excimer laser ablation of the cornea," Opt. Eng. 34, 661-667 (1995).
[CrossRef]

M. N. Ediger, G. H. Pettit, and D. W. Hahn, "Enhanced ArF laser absorption in a collagen target under ablative conditions," Lasers Surg. Med. 15, 107-111 (1994).
[CrossRef] [PubMed]

G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Dynamic optical properties of collagen-based tissue during ArF excimer laser ablation," Appl. Opt. 32, 488-493 (1993).
[CrossRef] [PubMed]

M. N. Ediger, G. H. Pettit, and R. P. Weiblinger, "Noninvasive monitoring of excimer laser ablation by time-resolved reflectometry," Refract. Corneal Surg. 9, 268-275 (1993).
[PubMed]

M. N. Ediger, G. H. Pettit, R. P. Weiblinger, and C. H. Chen, "Transmission of corneal collagen during ArF excimer laser ablation," Lasers Surg. Med. 13, 204-210 (1993).
[CrossRef] [PubMed]

G. H. Pettit and M. N. Ediger, "Pump/probe transmission measurements of corneal tissue during excimer laser ablation," Lasers Surg. Med. 13, 363-367 (1993).
[CrossRef] [PubMed]

Engel, V.

P. Anfinrud, R. de Vivie-Riedle, and V. Engel, "Ultrafast detection and control of molecular dynamics," Proc. Natl. Acad. Sci. U.S.A. 96, 8328-8329 (1999).
[CrossRef] [PubMed]

Fantes, F. E.

F. E. Fantes and G. O. Waring, "Effect of excimer laser radiant exposure on uniformity of ablated corneal surface," Lasers Surg. Med. 9, 533-542 (1989).
[CrossRef] [PubMed]

Feltham, M. H.

M. H. Feltham, M. Optom, and F. Stapleton, "The effect of water content on the 193nm excimer laser ablation," Clin. Exp. Ophthalmol. 30, 99-103 (2002).
[CrossRef]

Fisher, B. T.

B. T. Fisher and D. W. Hahn, "Determination of excimer laser ablation rates of corneal tissue using wax impressions of ablation craters and white-light interferometry," Ophthalmic Surg. Lasers Imaging 35, 41-51 (2004).
[PubMed]

B. T. Fisher and D. W. Hahn, "Measurement of small-signal absorption coefficient and absorption cross section of collagen for 193-nm excimer laser light and the role of collagen in tissue ablation," Appl. Opt. 43, 5443-5451 (2004).
[CrossRef] [PubMed]

B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 363-370 (2003).
[CrossRef] [PubMed]

Fust, A.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, "Physical problems of excimer laser cornea ablation," Opt. Eng. 32, 2481-2486 (1993).
[CrossRef]

Genth, U.

H. J. Huebscher, U. Genth, and T. Seiler, "Determination of excimer laser ablation rate of the human cornea usingin vivo Scheimpflug videography," Invest. Ophthalmol. Visual Sci. 37, 42-46 (1996).

Giebel, A. W.

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews, and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Visual Sci. 40, 826-830 (1999).

Ginis, H. S.

I. G. Pallikaris, H. S. Ginis, G. A. Kounis, D. Anglos, T. G. Papazoglou, and L. P. Naoumidis, "Corneal hydration monitored by laser-induced breakdown spectroscopy," J. Refract. Surg. 14, 655-660 (1998).
[PubMed]

Goldstein, M. H.

B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 363-370 (2003).
[CrossRef] [PubMed]

Gross, M.

D. S. Aron-Rosa, J. L. Boulnoy, F. Carre, J. Delacour, M. Gross, M. LaCour, J. C. Olivo, and J. C. Timsit, "Excimer laser surgery of the cornea: qualitative and quantitative aspects of photoablation according to the energy density," J. Cataract Refractive Surg. 12, 27-33 (1986).

Hahn, D. W.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, "Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy," Spectrochim. Acta, Part B 59, 327-333 (2004).
[CrossRef]

B. T. Fisher and D. W. Hahn, "Determination of excimer laser ablation rates of corneal tissue using wax impressions of ablation craters and white-light interferometry," Ophthalmic Surg. Lasers Imaging 35, 41-51 (2004).
[PubMed]

B. T. Fisher and D. W. Hahn, "Measurement of small-signal absorption coefficient and absorption cross section of collagen for 193-nm excimer laser light and the role of collagen in tissue ablation," Appl. Opt. 43, 5443-5451 (2004).
[CrossRef] [PubMed]

B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 363-370 (2003).
[CrossRef] [PubMed]

M. N. Ediger, G. H. Pettit, and D. W. Hahn, "Enhanced ArF laser absorption in a collagen target under ablative conditions," Lasers Surg. Med. 15, 107-111 (1994).
[CrossRef] [PubMed]

Hertzog, L.

M. Campos, X. W. Wang, L. Hertzog, M. Lee, T. Clapham, S. L. Trokel, and P. J. McDonnell, "Ablation rates and surface ultrastructure of 193nm excimer laser keratectomies," Invest. Ophthalmol. Visual Sci. 34, 2493-2500 (1993).

Hillenkamp, F.

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, and C. M. Adler, "Excimer laser ablation of the cornea and lens: experimental studies," Ophthalmology 92, 741-748 (1985).
[PubMed]

Hita, E.

Hohreiter, V.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, "Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy," Spectrochim. Acta, Part B 59, 327-333 (2004).
[CrossRef]

Hopp, B.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, "Physical problems of excimer laser cornea ablation," Opt. Eng. 32, 2481-2486 (1993).
[CrossRef]

Hu, X.-H.

A. Lembares, X.-H. Hu, and G. W. Kalmus, "Absorption spectra of corneas in the far ultraviolet region," Invest. Ophthalmol. Visual Sci. 38, 1283-1387 (1997).

Huebscher, H. J.

H. J. Huebscher, U. Genth, and T. Seiler, "Determination of excimer laser ablation rate of the human cornea usingin vivo Scheimpflug videography," Invest. Ophthalmol. Visual Sci. 37, 42-46 (1996).

Hughes, T. P.

T. P. Hughes, Plasmas and Laser Light (Wiley, 1975).

Jimenez, J. R.

Kalmus, G. W.

A. Lembares, X.-H. Hu, and G. W. Kalmus, "Absorption spectra of corneas in the far ultraviolet region," Invest. Ophthalmol. Visual Sci. 38, 1283-1387 (1997).

Kharizov, A. A.

M. S. Kitai, V. L. Popkov, V. A. Semchishen, and A. A. Kharizov, "The physics of UV laser cornea ablation," IEEE J. Quantum Electron. 27, 302-307 (1991).
[CrossRef]

Kitai, M. S.

M. S. Kitai, V. L. Popkov, V. A. Semchishen, and A. A. Kharizov, "The physics of UV laser cornea ablation," IEEE J. Quantum Electron. 27, 302-307 (1991).
[CrossRef]

Kounis, G. A.

I. G. Pallikaris, H. S. Ginis, G. A. Kounis, D. Anglos, T. G. Papazoglou, and L. P. Naoumidis, "Corneal hydration monitored by laser-induced breakdown spectroscopy," J. Refract. Surg. 14, 655-660 (1998).
[PubMed]

Krueger, R. R.

R. R. Krueger and S. L. Trokel, "Quantitation of corneal ablation by ultraviolet laser light," Arch. Ophthalmol. (Chicago) 103, 1741-1742 (1985).

LaCour, M.

D. S. Aron-Rosa, J. L. Boulnoy, F. Carre, J. Delacour, M. Gross, M. LaCour, J. C. Olivo, and J. C. Timsit, "Excimer laser surgery of the cornea: qualitative and quantitative aspects of photoablation according to the energy density," J. Cataract Refractive Surg. 12, 27-33 (1986).

Lee, M.

M. Campos, X. W. Wang, L. Hertzog, M. Lee, T. Clapham, S. L. Trokel, and P. J. McDonnell, "Ablation rates and surface ultrastructure of 193nm excimer laser keratectomies," Invest. Ophthalmol. Visual Sci. 34, 2493-2500 (1993).

Lembares, A.

A. Lembares, X.-H. Hu, and G. W. Kalmus, "Absorption spectra of corneas in the far ultraviolet region," Invest. Ophthalmol. Visual Sci. 38, 1283-1387 (1997).

Lerman, S.

S. Lerman, Radiant Energy and the Eye (Macmillan, 1980).

Liaw, L. H.

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews, and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Visual Sci. 40, 826-830 (1999).

Lukyanchuk, B.

B. Lukyanchuk, N. Bityurin, S. Anisimov, N. Arnold, and D. Bauerle, "The role of excited species in ultraviolet-laser materials ablation. 3. Non-stationary ablation of organic polymers," Appl. Phys. A 62, 397-401 (1996).
[CrossRef]

Lunney, J. G.

V. N. Tokarev, J. G. Lunney, W. Marine, and M. Sentis, "Analytical thermal model of ultraviolet laser ablation with single-photon absorption in the plume," J. Appl. Phys. 78, 1241-1246 (1995).
[CrossRef]

Maloney, R. K.

P. J. Dougherty, K. L. Wellish, and R. K. Maloney, "Excimer laser ablation rate and corneal hydration," Am. J. Ophthalmol. 118, 169-176 (1994).
[PubMed]

Manns, F.

F. Manns, P. Milne, and J. M. Parel, "Ultraviolet corneal photoablation," J. Refract. Surg. 18, 1-5 (2002).

Marine, W.

V. N. Tokarev, J. G. Lunney, W. Marine, and M. Sentis, "Analytical thermal model of ultraviolet laser ablation with single-photon absorption in the plume," J. Appl. Phys. 78, 1241-1246 (1995).
[CrossRef]

Marton, Z.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, "Physical problems of excimer laser cornea ablation," Opt. Eng. 32, 2481-2486 (1993).
[CrossRef]

Masiello, K. A.

B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 363-370 (2003).
[CrossRef] [PubMed]

McDonnell, P. J.

M. Campos, X. W. Wang, L. Hertzog, M. Lee, T. Clapham, S. L. Trokel, and P. J. McDonnell, "Ablation rates and surface ultrastructure of 193nm excimer laser keratectomies," Invest. Ophthalmol. Visual Sci. 34, 2493-2500 (1993).

McGrann, J. V.

J. V. McGrann, J. Neev, and M. W. Berns, "Physical characteristics of excimer laser-tissue interactions," in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE 1646, 56-68 (1992).

Mikic, B. B.

Milne, P.

F. Manns, P. Milne, and J. M. Parel, "Ultraviolet corneal photoablation," J. Refract. Surg. 18, 1-5 (2002).

Mohay, J.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, "Physical problems of excimer laser cornea ablation," Opt. Eng. 32, 2481-2486 (1993).
[CrossRef]

Naoumidis, L. P.

I. G. Pallikaris, H. S. Ginis, G. A. Kounis, D. Anglos, T. G. Papazoglou, and L. P. Naoumidis, "Corneal hydration monitored by laser-induced breakdown spectroscopy," J. Refract. Surg. 14, 655-660 (1998).
[PubMed]

Neev, J.

J. V. McGrann, J. Neev, and M. W. Berns, "Physical characteristics of excimer laser-tissue interactions," in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE 1646, 56-68 (1992).

Nishioka, N. S.

Nunez, M. H.

Oks, E.

C. G. Parigger, D. H. Plemmons, and E. Oks, "Balmer series Hβ measurements in a laser-induced hydrogen plasma," Appl. Opt. 42, 5992-6000 (2003).
[CrossRef] [PubMed]

E. Oks, "A new spectroscopic effect resulting in a narrowing of hydrogen lines in dense plasmas," J. Quant. Spectrosc. Radiat. Transf. 65, 405-414 (2000).
[CrossRef]

Olivo, J. C.

D. S. Aron-Rosa, J. L. Boulnoy, F. Carre, J. Delacour, M. Gross, M. LaCour, J. C. Olivo, and J. C. Timsit, "Excimer laser surgery of the cornea: qualitative and quantitative aspects of photoablation according to the energy density," J. Cataract Refractive Surg. 12, 27-33 (1986).

Omenetto, N.

Optom, M.

M. H. Feltham, M. Optom, and F. Stapleton, "The effect of water content on the 193nm excimer laser ablation," Clin. Exp. Ophthalmol. 30, 99-103 (2002).
[CrossRef]

Pallikaris, I. G.

I. G. Pallikaris, H. S. Ginis, G. A. Kounis, D. Anglos, T. G. Papazoglou, and L. P. Naoumidis, "Corneal hydration monitored by laser-induced breakdown spectroscopy," J. Refract. Surg. 14, 655-660 (1998).
[PubMed]

Paltauf, G.

G. Paltauf and P. E. Dyer, "Photochemical processes and effects in ablation," Chem. Rev. (Washington, D.C.) 103, 487-518 (2003).
[CrossRef]

Papazoglou, T. G.

I. G. Pallikaris, H. S. Ginis, G. A. Kounis, D. Anglos, T. G. Papazoglou, and L. P. Naoumidis, "Corneal hydration monitored by laser-induced breakdown spectroscopy," J. Refract. Surg. 14, 655-660 (1998).
[PubMed]

Parel, J. M.

F. Manns, P. Milne, and J. M. Parel, "Ultraviolet corneal photoablation," J. Refract. Surg. 18, 1-5 (2002).

Parigger, C. G.

Perez-Ocon, F.

Petrucci, G.

Pettit, G. H.

G. H. Pettit and M. N. Ediger, "Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation," Appl. Opt. 35, 3386-3391 (1996).
[CrossRef] [PubMed]

G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Excimer laser ablation of the cornea," Opt. Eng. 34, 661-667 (1995).
[CrossRef]

M. N. Ediger, G. H. Pettit, and D. W. Hahn, "Enhanced ArF laser absorption in a collagen target under ablative conditions," Lasers Surg. Med. 15, 107-111 (1994).
[CrossRef] [PubMed]

G. H. Pettit and M. N. Ediger, "Pump/probe transmission measurements of corneal tissue during excimer laser ablation," Lasers Surg. Med. 13, 363-367 (1993).
[CrossRef] [PubMed]

G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Dynamic optical properties of collagen-based tissue during ArF excimer laser ablation," Appl. Opt. 32, 488-493 (1993).
[CrossRef] [PubMed]

M. N. Ediger, G. H. Pettit, R. P. Weiblinger, and C. H. Chen, "Transmission of corneal collagen during ArF excimer laser ablation," Lasers Surg. Med. 13, 204-210 (1993).
[CrossRef] [PubMed]

M. N. Ediger, G. H. Pettit, and R. P. Weiblinger, "Noninvasive monitoring of excimer laser ablation by time-resolved reflectometry," Refract. Corneal Surg. 9, 268-275 (1993).
[PubMed]

G. H. Pettit and R. Sauerbrey, "Pulsed ultraviolet laser ablation," Appl. Phys. A 56, 51-63 (1993).
[CrossRef]

Plemmons, D. H.

Popkov, V. L.

M. S. Kitai, V. L. Popkov, V. A. Semchishen, and A. A. Kharizov, "The physics of UV laser cornea ablation," IEEE J. Quantum Electron. 27, 302-307 (1991).
[CrossRef]

Prasad, P. N.

P. N. Prasad, Introduction to Biophotonics (Wiley, 2003).
[CrossRef]

Puliafito, C. A.

C. A. Puliafito, K. Wong, and R. F. Steinert, "Quantitative and ultrastructural studies of excimer laser ablation of the cornea at 193 and 248 nanometers," Lasers Surg. Med. 7, 155-159 (1987).
[CrossRef] [PubMed]

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, and C. M. Adler, "Excimer laser ablation of the cornea and lens: experimental studies," Ophthalmology 92, 741-748 (1985).
[PubMed]

Racz, B.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, "Physical problems of excimer laser cornea ablation," Opt. Eng. 32, 2481-2486 (1993).
[CrossRef]

Raizer, Y. P.

Y. B. Zel"dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, 2002).

Ratkay, I.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, "Physical problems of excimer laser cornea ablation," Opt. Eng. 32, 2481-2486 (1993).
[CrossRef]

Ready, J. F.

J. F. Ready, Effects of High-Power Laser Radiation (Academic, 1971).

Rodgers, M. O.

Rodriguez-Matin, F.

Sauerbrey, R.

G. H. Pettit and R. Sauerbrey, "Pulsed ultraviolet laser ablation," Appl. Phys. A 56, 51-63 (1993).
[CrossRef]

Sausa, R. C.

J. B. Simeonsson and R. C. Sausa, "A critical review of laser photofragmentation-fragment detection techniques for gas phase chemical analysis," Appl. Spectrosc. Rev. 31, 1-72 (1996).
[CrossRef]

Seeger, D. E.

R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid--details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromolecules 19, 916-921 (1986).
[CrossRef]

Seiler, T.

H. J. Huebscher, U. Genth, and T. Seiler, "Determination of excimer laser ablation rate of the human cornea usingin vivo Scheimpflug videography," Invest. Ophthalmol. Visual Sci. 37, 42-46 (1996).

Semchishen, V. A.

M. S. Kitai, V. L. Popkov, V. A. Semchishen, and A. A. Kharizov, "The physics of UV laser cornea ablation," IEEE J. Quantum Electron. 27, 302-307 (1991).
[CrossRef]

Sentis, M.

V. N. Tokarev, J. G. Lunney, W. Marine, and M. Sentis, "Analytical thermal model of ultraviolet laser ablation with single-photon absorption in the plume," J. Appl. Phys. 78, 1241-1246 (1995).
[CrossRef]

Simeonsson, J. B.

J. B. Simeonsson and R. C. Sausa, "A critical review of laser photofragmentation-fragment detection techniques for gas phase chemical analysis," Appl. Spectrosc. Rev. 31, 1-72 (1996).
[CrossRef]

Simon, P.

P. Simon, "Time-resolved ablation site photography of XeCl-laser irradiated polyimide," Appl. Phys. B 48, 253-256 (1989).
[CrossRef]

Srinivasan, R.

E. Sutcliffe and R. Srinivasan, "Dynamics of UV laser ablation of organic polymer surfaces," J. Appl. Phys. 60, 3315-3322 (1986).
[CrossRef]

R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid--details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromolecules 19, 916-921 (1986).
[CrossRef]

Stapleton, F.

M. H. Feltham, M. Optom, and F. Stapleton, "The effect of water content on the 193nm excimer laser ablation," Clin. Exp. Ophthalmol. 30, 99-103 (2002).
[CrossRef]

Steinert, R. F.

C. A. Puliafito, K. Wong, and R. F. Steinert, "Quantitative and ultrastructural studies of excimer laser ablation of the cornea at 193 and 248 nanometers," Lasers Surg. Med. 7, 155-159 (1987).
[CrossRef] [PubMed]

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, and C. M. Adler, "Excimer laser ablation of the cornea and lens: experimental studies," Ophthalmology 92, 741-748 (1985).
[PubMed]

Sutcliffe, E.

E. Sutcliffe and R. Srinivasan, "Dynamics of UV laser ablation of organic polymer surfaces," J. Appl. Phys. 60, 3315-3322 (1986).
[CrossRef]

Suveges, I.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, "Physical problems of excimer laser cornea ablation," Opt. Eng. 32, 2481-2486 (1993).
[CrossRef]

Szabo, G.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, "Physical problems of excimer laser cornea ablation," Opt. Eng. 32, 2481-2486 (1993).
[CrossRef]

Timsit, J. C.

D. S. Aron-Rosa, J. L. Boulnoy, F. Carre, J. Delacour, M. Gross, M. LaCour, J. C. Olivo, and J. C. Timsit, "Excimer laser surgery of the cornea: qualitative and quantitative aspects of photoablation according to the energy density," J. Cataract Refractive Surg. 12, 27-33 (1986).

Tokarev, V. N.

V. N. Tokarev, J. G. Lunney, W. Marine, and M. Sentis, "Analytical thermal model of ultraviolet laser ablation with single-photon absorption in the plume," J. Appl. Phys. 78, 1241-1246 (1995).
[CrossRef]

Trokel, S. L.

M. Campos, X. W. Wang, L. Hertzog, M. Lee, T. Clapham, S. L. Trokel, and P. J. McDonnell, "Ablation rates and surface ultrastructure of 193nm excimer laser keratectomies," Invest. Ophthalmol. Visual Sci. 34, 2493-2500 (1993).

R. R. Krueger and S. L. Trokel, "Quantitation of corneal ablation by ultraviolet laser light," Arch. Ophthalmol. (Chicago) 103, 1741-1742 (1985).

Turns, S. R.

S. R. Turns, An Introduction to Combustion: Concepts and Applications (McGraw-Hill, 2000).

Van Saarloos, P. P.

P. P. Van Saarloos and I. J. Constable, "Bovine corneal stroma ablation rate with 193-nm excimer laser radiation: quantitative measurement," Refract. Corneal Surg. 6, 424-429 (1990).
[PubMed]

Venugopalan, V.

VerSteeg, B.

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews, and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Visual Sci. 40, 826-830 (1999).

Vogel, A.

A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. (Washington, D.C.) 103, 577-644 (2003).
[CrossRef]

Wang, X. W.

M. Campos, X. W. Wang, L. Hertzog, M. Lee, T. Clapham, S. L. Trokel, and P. J. McDonnell, "Ablation rates and surface ultrastructure of 193nm excimer laser keratectomies," Invest. Ophthalmol. Visual Sci. 34, 2493-2500 (1993).

Waring, G. O.

F. E. Fantes and G. O. Waring, "Effect of excimer laser radiant exposure on uniformity of ablated corneal surface," Lasers Surg. Med. 9, 533-542 (1989).
[CrossRef] [PubMed]

G. O. Waring, "Development of a system for excimer laser corneal surgery," Trans. Am. Ophthalmol. Soc. 87, 854-983 (1989).
[PubMed]

Weiblinger, R. P.

G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Excimer laser ablation of the cornea," Opt. Eng. 34, 661-667 (1995).
[CrossRef]

G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Dynamic optical properties of collagen-based tissue during ArF excimer laser ablation," Appl. Opt. 32, 488-493 (1993).
[CrossRef] [PubMed]

M. N. Ediger, G. H. Pettit, and R. P. Weiblinger, "Noninvasive monitoring of excimer laser ablation by time-resolved reflectometry," Refract. Corneal Surg. 9, 268-275 (1993).
[PubMed]

M. N. Ediger, G. H. Pettit, R. P. Weiblinger, and C. H. Chen, "Transmission of corneal collagen during ArF excimer laser ablation," Lasers Surg. Med. 13, 204-210 (1993).
[CrossRef] [PubMed]

Wellish, K. L.

P. J. Dougherty, K. L. Wellish, and R. K. Maloney, "Excimer laser ablation rate and corneal hydration," Am. J. Ophthalmol. 118, 169-176 (1994).
[PubMed]

Wong, K.

C. A. Puliafito, K. Wong, and R. F. Steinert, "Quantitative and ultrastructural studies of excimer laser ablation of the cornea at 193 and 248 nanometers," Lasers Surg. Med. 7, 155-159 (1987).
[CrossRef] [PubMed]

Yablon, A. D.

Zel"dovich, Y. B.

Y. B. Zel"dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, 2002).

Am. J. Ophthalmol. (1)

P. J. Dougherty, K. L. Wellish, and R. K. Maloney, "Excimer laser ablation rate and corneal hydration," Am. J. Ophthalmol. 118, 169-176 (1994).
[PubMed]

Appl. Opt. (6)

Appl. Phys. A (2)

B. Lukyanchuk, N. Bityurin, S. Anisimov, N. Arnold, and D. Bauerle, "The role of excited species in ultraviolet-laser materials ablation. 3. Non-stationary ablation of organic polymers," Appl. Phys. A 62, 397-401 (1996).
[CrossRef]

G. H. Pettit and R. Sauerbrey, "Pulsed ultraviolet laser ablation," Appl. Phys. A 56, 51-63 (1993).
[CrossRef]

Appl. Phys. B (1)

P. Simon, "Time-resolved ablation site photography of XeCl-laser irradiated polyimide," Appl. Phys. B 48, 253-256 (1989).
[CrossRef]

Appl. Spectrosc. (2)

Appl. Spectrosc. Rev. (1)

J. B. Simeonsson and R. C. Sausa, "A critical review of laser photofragmentation-fragment detection techniques for gas phase chemical analysis," Appl. Spectrosc. Rev. 31, 1-72 (1996).
[CrossRef]

Arch. Ophthalmol. (Chicago) (1)

R. R. Krueger and S. L. Trokel, "Quantitation of corneal ablation by ultraviolet laser light," Arch. Ophthalmol. (Chicago) 103, 1741-1742 (1985).

Chem. Rev. (Washington, D.C.) (2)

G. Paltauf and P. E. Dyer, "Photochemical processes and effects in ablation," Chem. Rev. (Washington, D.C.) 103, 487-518 (2003).
[CrossRef]

A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. (Washington, D.C.) 103, 577-644 (2003).
[CrossRef]

Clin. Exp. Ophthalmol. (1)

M. H. Feltham, M. Optom, and F. Stapleton, "The effect of water content on the 193nm excimer laser ablation," Clin. Exp. Ophthalmol. 30, 99-103 (2002).
[CrossRef]

Cornea (1)

B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 363-370 (2003).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

M. S. Kitai, V. L. Popkov, V. A. Semchishen, and A. A. Kharizov, "The physics of UV laser cornea ablation," IEEE J. Quantum Electron. 27, 302-307 (1991).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (4)

H. J. Huebscher, U. Genth, and T. Seiler, "Determination of excimer laser ablation rate of the human cornea usingin vivo Scheimpflug videography," Invest. Ophthalmol. Visual Sci. 37, 42-46 (1996).

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews, and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Visual Sci. 40, 826-830 (1999).

M. Campos, X. W. Wang, L. Hertzog, M. Lee, T. Clapham, S. L. Trokel, and P. J. McDonnell, "Ablation rates and surface ultrastructure of 193nm excimer laser keratectomies," Invest. Ophthalmol. Visual Sci. 34, 2493-2500 (1993).

A. Lembares, X.-H. Hu, and G. W. Kalmus, "Absorption spectra of corneas in the far ultraviolet region," Invest. Ophthalmol. Visual Sci. 38, 1283-1387 (1997).

J. Appl. Phys. (2)

V. N. Tokarev, J. G. Lunney, W. Marine, and M. Sentis, "Analytical thermal model of ultraviolet laser ablation with single-photon absorption in the plume," J. Appl. Phys. 78, 1241-1246 (1995).
[CrossRef]

E. Sutcliffe and R. Srinivasan, "Dynamics of UV laser ablation of organic polymer surfaces," J. Appl. Phys. 60, 3315-3322 (1986).
[CrossRef]

J. Cataract Refractive Surg. (1)

D. S. Aron-Rosa, J. L. Boulnoy, F. Carre, J. Delacour, M. Gross, M. LaCour, J. C. Olivo, and J. C. Timsit, "Excimer laser surgery of the cornea: qualitative and quantitative aspects of photoablation according to the energy density," J. Cataract Refractive Surg. 12, 27-33 (1986).

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

E. Oks, "A new spectroscopic effect resulting in a narrowing of hydrogen lines in dense plasmas," J. Quant. Spectrosc. Radiat. Transf. 65, 405-414 (2000).
[CrossRef]

J. Refract. Surg. (3)

I. G. Pallikaris, H. S. Ginis, G. A. Kounis, D. Anglos, T. G. Papazoglou, and L. P. Naoumidis, "Corneal hydration monitored by laser-induced breakdown spectroscopy," J. Refract. Surg. 14, 655-660 (1998).
[PubMed]

J. R. Jimenez, R. G. Anera, and L. J. del Barco, "Equation for corneal asphericity after corneal refractive surgery," J. Refract. Surg. 19, 65-69 (2003).
[PubMed]

F. Manns, P. Milne, and J. M. Parel, "Ultraviolet corneal photoablation," J. Refract. Surg. 18, 1-5 (2002).

Lasers Surg. Med. (5)

C. A. Puliafito, K. Wong, and R. F. Steinert, "Quantitative and ultrastructural studies of excimer laser ablation of the cornea at 193 and 248 nanometers," Lasers Surg. Med. 7, 155-159 (1987).
[CrossRef] [PubMed]

M. N. Ediger, G. H. Pettit, R. P. Weiblinger, and C. H. Chen, "Transmission of corneal collagen during ArF excimer laser ablation," Lasers Surg. Med. 13, 204-210 (1993).
[CrossRef] [PubMed]

G. H. Pettit and M. N. Ediger, "Pump/probe transmission measurements of corneal tissue during excimer laser ablation," Lasers Surg. Med. 13, 363-367 (1993).
[CrossRef] [PubMed]

M. N. Ediger, G. H. Pettit, and D. W. Hahn, "Enhanced ArF laser absorption in a collagen target under ablative conditions," Lasers Surg. Med. 15, 107-111 (1994).
[CrossRef] [PubMed]

F. E. Fantes and G. O. Waring, "Effect of excimer laser radiant exposure on uniformity of ablated corneal surface," Lasers Surg. Med. 9, 533-542 (1989).
[CrossRef] [PubMed]

Macromolecules (1)

R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid--details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromolecules 19, 916-921 (1986).
[CrossRef]

Ophthalmic Surg. Lasers Imaging (1)

B. T. Fisher and D. W. Hahn, "Determination of excimer laser ablation rates of corneal tissue using wax impressions of ablation craters and white-light interferometry," Ophthalmic Surg. Lasers Imaging 35, 41-51 (2004).
[PubMed]

Ophthalmology (1)

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, and C. M. Adler, "Excimer laser ablation of the cornea and lens: experimental studies," Ophthalmology 92, 741-748 (1985).
[PubMed]

Opt. Eng. (2)

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, "Physical problems of excimer laser cornea ablation," Opt. Eng. 32, 2481-2486 (1993).
[CrossRef]

G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Excimer laser ablation of the cornea," Opt. Eng. 34, 661-667 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

P. Anfinrud, R. de Vivie-Riedle, and V. Engel, "Ultrafast detection and control of molecular dynamics," Proc. Natl. Acad. Sci. U.S.A. 96, 8328-8329 (1999).
[CrossRef] [PubMed]

Refract. Corneal Surg. (2)

P. P. Van Saarloos and I. J. Constable, "Bovine corneal stroma ablation rate with 193-nm excimer laser radiation: quantitative measurement," Refract. Corneal Surg. 6, 424-429 (1990).
[PubMed]

M. N. Ediger, G. H. Pettit, and R. P. Weiblinger, "Noninvasive monitoring of excimer laser ablation by time-resolved reflectometry," Refract. Corneal Surg. 9, 268-275 (1993).
[PubMed]

Spectrochim. Acta, Part B (1)

V. Hohreiter, J. E. Carranza, and D. W. Hahn, "Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy," Spectrochim. Acta, Part B 59, 327-333 (2004).
[CrossRef]

Trans. Am. Ophthalmol. Soc. (1)

G. O. Waring, "Development of a system for excimer laser corneal surgery," Trans. Am. Ophthalmol. Soc. 87, 854-983 (1989).
[PubMed]

Other (9)

S. Lerman, Radiant Energy and the Eye (Macmillan, 1980).

S. R. Turns, An Introduction to Combustion: Concepts and Applications (McGraw-Hill, 2000).

L.J.Radziemski and D.A.Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, 1989).

T. P. Hughes, Plasmas and Laser Light (Wiley, 1975).

Y. B. Zel"dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, 2002).

G. Bekefi, Principles of Laser Plasmas (Wiley, 1976).

J. F. Ready, Effects of High-Power Laser Radiation (Academic, 1971).

P. N. Prasad, Introduction to Biophotonics (Wiley, 2003).
[CrossRef]

J. V. McGrann, J. Neev, and M. W. Berns, "Physical characteristics of excimer laser-tissue interactions," in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE 1646, 56-68 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of experimental configuration for porcine eye ablation experiments, including laser delivery system and emission collection optics.

Fig. 2
Fig. 2

Emission spectra (corrected for relative intensity) from porcine eyes during ArF excimer laser ablation. The upper and lower spectra correspond to laser energies of 5 and 3.5 mJ pulse , respectively. The C I and Ca I atomic emission lines are noted at their respective locations, and a closer view of the C I line is shown in the inset.

Fig. 3
Fig. 3

Porcine eye emission spectra recorded during ablation with laser pulse energies of 3.5 mJ pulse (lower spectrum) and 5 mJ pulse (upper spectrum). Inset A is a spectrum corresponding to 193 nm photofragmentation of a NaCl aerosol. Inset B is a spectrum corresponding to Na emission from a 1064 nm laser-induced plasma in a sodium-containing aerosol.

Fig. 4
Fig. 4

Comparison of ablation rates predicted by (1) the dynamic ablation model in the static limit, whereby species 3 and 4 have the same absorption cross sections as species 1, and (2) rates predicted by the static Beer–Lambert law. Dynamic model parameters: Δ x = 20 nm , P = 0.8 , σ 3 = σ 4 = σ 1 = 1.19 × 10 17 cm 2 .

Fig. 5
Fig. 5

Parametric study showing the peak photon density as a function of tissue depth as predicted by the dynamic ablation model for an incident laser fluence of 350 mJ cm 2 . Curve A is the base case using the following parameters: k I = 7.1 × 10 10 cm 3 s , k II = 3.7 × 10 17 cm 3 s , σ 3 = 4.5 × 10 15 cm 2 , and σ 4 = 4.5 × 10 24 cm 2 . Curve B reflects a 20% decrease in k I and a 20% increase in σ 3 ; curve C reflects a tenfold decrease in k I ; and curve D reflects a 100-fold increase in k I and a tenfold increase in σ 3 .

Fig. 6
Fig. 6

Comparison of peak photon density as a function of tissue depth as predicted by the dynamic ablation model and by the static Beer–Lambert blow-off model for absorption coefficients of 16,000 and 40,000 cm 1 . A dashed horizontal line indicates the ablation threshold, and the ablation depths predicted by the models are shown. Dynamic model parameters: Δ x = 20 nm , P = 0.8 , σ 3 = 4.5 × 10 15 cm 2 , σ 4 = 4.5 × 10 24 cm 2 , F = 350 mJ cm 2 .

Fig. 7
Fig. 7

Photon density temporal profiles predicted by the dynamic ablation model at five tissue depths. The temporal profile of the incident laser pulse is also shown. Dynamic model parameters: Δ x = 20 nm , P = 0.8 , σ 3 = 4.5 × 10 15 cm 2 , σ 4 = 4.5 × 10 24 cm 2 , F = 350 mJ cm 2 .

Fig. 8
Fig. 8

Corneal tissue absorption coefficient as a function of time as predicted by the dynamic ablation model. The temporal profile of the incident laser pulse is also plotted using the secondary ordinate axis to the right. Both parameters are at a fixed depth of 0.74 μ m . Dynamic model parameters: Δ x = 20 nm , P = 0.8 , σ 3 = 4.5 × 10 15 cm 2 , σ 4 = 4.5 × 10 24 cm 2 , F = 350 mJ cm 2 .

Fig. 9
Fig. 9

Ablation rate as a function of laser fluence for ArF excimer laser ablation of corneal tissue, comparing reported experimental data[8, 48, 49, 50, 51, 52, 53, 54, 55] with values predicted by the dynamic ablation model (middle curve). Values predicted by the static Beer–Lambert law (upper and lower curves) are also included for absorption coefficients of 16,000 and 40,000 cm 1 . Dynamic model parameters: Δ x = 20 nm , P = 0.8 , σ 3 = 4.5 × 10 15 cm 2 , σ 4 = 4.5 × 10 24 cm 2 .

Fig. 10
Fig. 10

Ablation rate as a function of corneal tissue water content, as predicted by the dynamic ablation model. Dynamic model parameters: Δ x = 20 nm , σ 3 = 4.5 × 10 15 cm 2 , σ 4 = 4.5 × 10 24 cm 2 , F = 350 mJ cm 2 .

Tables (1)

Tables Icon

Table 1 Dynamic Corneal Tissue Ablation Model Parameters

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = I 0 exp ( α x ) .
α ( x , t ) = ρ 1 ( x , t ) σ 1 + ρ 2 ( x , t ) σ 2 + ρ 3 ( x , t ) σ 3 + ρ 4 ( x , t ) σ 4 .
( R I ) S 1 + n ( h ν ) 193 k I S 3 .
ρ 1 ( x , t ) t = ρ 1 ( x , t ) ρ h ν ( x , t ) n k I .
( R II ) S 3 + S 2 k II S 4 ,
ρ 2 ( x , t ) t = ρ 4 ( x , t ) t = ρ 2 ( x , t ) ρ 3 ( x , t ) k II .
ρ 3 ( x , t ) t = ρ 1 ( x , t ) ρ h ν ( x , t ) n k I ρ 2 ( x , t ) ρ 3 ( x , t ) k II .
d I = ( α I ) d x .
ρ h ν ( x , t ) x = α ρ h ν ( x , t ) .
ρ h ν ( x , t ) x = [ ρ 1 ( x , t ) σ 1 + ρ 2 ( x , t ) σ 2 + ρ 3 ( x , t ) σ 3 + ρ 4 ( x , t ) σ 4 ] ρ h ν ( x , t ) .
ρ 3 ( x , t = 0 ) = ρ 30 = 0 ,
ρ 4 ( x , t = 0 ) = ρ 40 = 0 .
ρ 1 ( x , t = 0 ) = ρ 10 = ( 1 P ) ( 1 g cm 3 ) ( 6.77 × 10 21 g 1 ) .
ρ 2 ( x , t = 0 ) = ρ 20 = P ( 1 g cm 3 ) ( 3.34 × 10 22 g 1 ) .
p ( t ) = 1 s d e v 2 π exp [ ( t t a v g ) 2 2 s d e v 2 ] .
p ( t a v g ± 3 s d e v ) = 0 .
I ( x = 0 , t ) = F ( 1 h ν ) p ( t ) .
ρ h ν ( x = 0 , t ) = I ( x = 0 , t ) c c o r = ( n c o r c v a c ) [ F ( 1 h ν ) p ( t ) ] .
ρ h ν ( x = 0 , t ) = ( F h ν ) ( n c o r c v a c ) [ 1 ( 4.2 ns ) 2 π ] exp [ ( t 12.6 ns ) 2 2 ( 4.2 ns ) 2 ] .
τ II = 1 ρ 2 k II .
τ I = 1 ρ 1 k I .
k I = 1 ρ 1 τ I = 1 ( 1.4 × 10 21 cm 3 ) ( 10 × 10 12 s ) 7.1 × 10 11 cm 3 s ,
k II = 1 ρ 2 τ II = 1 ( 2.7 × 10 22 cm 3 ) ( 1 × 10 6 s ) 3.7 × 10 17 cm 3 s .

Metrics