Abstract

We investigate a channelized-ideal observer (CIO) with Laguerre–Gauss (LG) channels to approximate ideal-observer performance in detection tasks involving non-Gaussian distributed lumpy backgrounds and a Gaussian signal. A Markov-chain Monte Carlo approach is employed to determine the performance of both the ideal observer and the CIO using a large number of LG channels. Our results indicate that the CIO with LG channels can approximate ideal-observer performance within error bars, depending on the imaging system, object, and channel parameters. The CIO also outperforms a channelized-Hotelling observer using the same channels. In addition, an alternative approach for estimating the CIO is investigated. This approach makes use of the characteristic functions of channelized data and employs an approximation method to the area under the receiver operating characteristic curve. The alternative approach provides good estimates of the performance of the CIO with five LG channels. However, for large channel cases, more efficient computational methods need to be developed for the CIO to become useful in practice.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (58)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription