Abstract

We demonstrate through a series of simulations that by parameterizing the temporal speckle contrast statistic from a sequence of translating speckle images on a number of experimental constants, the local temporal contrast can be used to quantitatively assess local motion, provided that the spatial and temporal Nyquist sampling criteria are both met. We develop a simple exponential model for quantifying speckle motion for speckle patterns that display arbitrary intensity statistics and provide suggestions for optimizing both the experimental acquisition of speckle data and the temporal contrast analysis of the data. The confounding effects of uncorrelated noise are also discussed. The model is demonstrated by applying it to an optical coherence tomography image sequence of an engineered tissue construct undergoing dynamic compression. Applications to tissue mechanics are shown, although the discussion is equally relevant for fluid motion studies.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. W. Goodman, "Statistical properties of laser speckle patterns," in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer-Verlag, 1975), pp. 9-75.
    [CrossRef]
  2. J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LACSA)," J. Biomed. Opt. 4, 164-175 (1999).
    [CrossRef]
  3. T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
    [CrossRef]
  4. H. Isono, S. Kishi, Y. Kimura, N. Hagiwara, N. Konishi, and H. Fuji, "Observation of choroidal circulation using index of erythrocytic velocity," Arch. Ophthalmol. (Chicago) 121, 225-231 (2003).
  5. S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44, 1823-1830 (2005).
    [CrossRef]
  6. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, "Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging," Opt. Lett. 31, 1824-1826 (2006).
    [CrossRef]
  7. J. K. Barton and S. Stromski, "Flow measurement without phase information in optical coherence tomography images," Opt. Express 13, 5234-5239 (2005).
    [CrossRef]
  8. T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. Ong, "New insights into image processing of cortical blood flow monitors using laser speckle imaging," IEEE Trans. Med. Imaging 20, 833-842 (2007).
    [CrossRef]
  9. R. Nothdurft and G. Yao, "Imaging obscured subsurface inhomogeneity using laser speckle," Opt. Express 13, 10034-10039 (2005).
    [CrossRef] [PubMed]
  10. M. T. Hinds, R. C. Rowe, Z. Ren, J. Teach, P. C. Wu, S. J. Kirkpatrick, K. D. Breneman, K. W. Gregory, and D. W. Courtman, "Development of a reinforced porcine elastin composite vascular scaffold," J. Biomed. Mater. Res. 77, 458-469 (2006).
    [CrossRef]
  11. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, "OCT-based elastography for large and small deformations," Opt. Express 14, 11585-11597 (2006).
    [CrossRef] [PubMed]

2007

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. Ong, "New insights into image processing of cortical blood flow monitors using laser speckle imaging," IEEE Trans. Med. Imaging 20, 833-842 (2007).
[CrossRef]

2006

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, "Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging," Opt. Lett. 31, 1824-1826 (2006).
[CrossRef]

M. T. Hinds, R. C. Rowe, Z. Ren, J. Teach, P. C. Wu, S. J. Kirkpatrick, K. D. Breneman, K. W. Gregory, and D. W. Courtman, "Development of a reinforced porcine elastin composite vascular scaffold," J. Biomed. Mater. Res. 77, 458-469 (2006).
[CrossRef]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, "OCT-based elastography for large and small deformations," Opt. Express 14, 11585-11597 (2006).
[CrossRef] [PubMed]

2005

2004

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef]

2003

H. Isono, S. Kishi, Y. Kimura, N. Hagiwara, N. Konishi, and H. Fuji, "Observation of choroidal circulation using index of erythrocytic velocity," Arch. Ophthalmol. (Chicago) 121, 225-231 (2003).

1999

J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LACSA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

Appl. Opt.

Arch. Ophthalmol. (Chicago)

H. Isono, S. Kishi, Y. Kimura, N. Hagiwara, N. Konishi, and H. Fuji, "Observation of choroidal circulation using index of erythrocytic velocity," Arch. Ophthalmol. (Chicago) 121, 225-231 (2003).

IEEE Trans. Med. Imaging

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. Ong, "New insights into image processing of cortical blood flow monitors using laser speckle imaging," IEEE Trans. Med. Imaging 20, 833-842 (2007).
[CrossRef]

J. Biomed. Mater. Res.

M. T. Hinds, R. C. Rowe, Z. Ren, J. Teach, P. C. Wu, S. J. Kirkpatrick, K. D. Breneman, K. W. Gregory, and D. W. Courtman, "Development of a reinforced porcine elastin composite vascular scaffold," J. Biomed. Mater. Res. 77, 458-469 (2006).
[CrossRef]

J. Biomed. Opt.

J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LACSA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

J. Cereb. Blood Flow Metab.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Other

J. W. Goodman, "Statistical properties of laser speckle patterns," in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer-Verlag, 1975), pp. 9-75.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Synthetically generated speckle pattern using a circular mask. (b) Same as in (a), but using an elliptical mask. Both patterns are sampled at 2 × Nyquist.

Fig. 2
Fig. 2

(a) Intensity PDF of the speckle pattern in Fig. 1a. (b) Intensity PDF of the speckle pattern in Fig. 1b.

Fig. 3
Fig. 3

(a) PSD of the speckle pattern shown in Fig. 1a. (b) PSD of the speckle pattern shown in Fig. 1b. Both PSDs occupy no more than 1/2 of the width of the frequency space indicating that the minimum speckle dimension is 2 × Nyquist or four pixels. In the elongated direction the speckle dimension was 8 × Nyquist.

Fig. 4
Fig. 4

Influence of number of frames analyzed. 95% confidence intervals on the estimates are below the resolution of the plot.

Fig. 5
Fig. 5

Effects of minimum speckle size and number of frames analyzed for a speckle pattern translating at 0.5 pixels/frame.

Fig. 6
Fig. 6

(a) Temporal contrast as function of χ. The top line is for fully developed, polarized speckle, and the bottom line is for Rayleigh distributed speckle. (b) Normalized temporal contrast as a function of χ. The theoretical contrast value, z, is determined by the intensity PDF of the speckle patterns.

Fig. 7
Fig. 7

(a) Influence of additive noise on the apparent temporal speckle contrast at a χ = 1.88 . (b) Changes in the global multiplicative factor, F, as a function of SNR for a χ = 1.88 .

Fig. 8
Fig. 8

OCT image of the engineered tissue construct. The arrows indicate the collagen + SMC gel layer. C t measurements were made on the gel layer and on the elastin layer below the gel. Scale bar is 1 mm .

Fig. 9
Fig. 9

Cumulative maximum likelihood speckle shift estimation (a), and C t (b) of the engineered tissue construct after ten frames. Units in (a) are in pixels. Rows higher than approximately 150 are entirely noise.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

C = σ I I .
C t = 1 0.46 χ 0.43 .
χ = exp { l n [ ( 1 C t ) 0.46 ] 0.43 } ,
shift = ( speckle size number of frames ) χ .
C t = 1 2 0.33 χ 0.49 ,
χ = exp { l n [ ( 1 2 C t ) 0.33 ] 0.49 } .
1 z C t = 1 α χ β ,
F = C t , meas C t , theory ,
C t , meas = F × C t , theory ,

Metrics