Abstract

The optical constants of Yb films have been determined in the 231700eV spectral range from transmittance measurements performed in situ on Yb films deposited by evaporation in ultrahigh vacuum conditions. Yb films were deposited over grids coated with a thin carbon film. Transmittance measurements were used to obtain the extinction coefficient of Yb films at each individual photon energy investigated. The energy range investigated encompasses Yb edges from M4,5 to O2,3. The current results, along with data in the literature, show that Yb has an interesting low-absorption band in the 1224eV range, which may be useful for the development of transmittance filters and multilayer coatings. The current data along with literature data and extrapolations were used to obtain n, the real part of the complex refractive index, using a Kramers–Krönig analysis. The application of the sum rules showed a good consistency of the results.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. G. Endriz and W. E. Spicer, "Reflectance studies of Ba, Sr, Eu, and Yb," Phys. Rev. B 2, 1466-1492 (1970).
    [CrossRef]
  2. J. I. Larruquert, J. A. Aznárez, J. A. Méndez, and J. Calvo-Angós, "Optical properties of Yb films in the far and the extreme ultraviolet," Appl. Opt. 42, 4566-4572 (2003).
    [CrossRef] [PubMed]
  3. S. A. Gribovskii and T. M. Zimkina, "Absorption coefficients of rare-earth elements of the lanthanum group in the ultrasoft x-ray region," Opt. Spectrosc. 35, 104-105 (1973).
  4. M. Fernández-Perea, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, L. Poletto, A. M. Malvezzi, A. Giglia, and S. Nannarone, "Determination of optical constants of scandium films in the 20-1000 eV range," J. Opt. Soc. Am. A 23, 2880-2887 (2006).
    [CrossRef]
  5. R. Verucchi and S. Nannarone, "Triode electron bombardment evaporation source for ultrahigh vacuum thin film deposition," Rev. Sci. Instrum. 71, 3444-3450 (2000).
    [CrossRef]
  6. B. L. Henke, E. M. Gullikson, and J. C. Davis, "X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92," At. Data Nucl. Data Tables 54, 181-342 (1993).
    [CrossRef]
  7. http://www-cxro.lbl.gov/opticallowbarconstants/
  8. S. Nannarone, F. Borgatti, A. De Luisa, B. P. Doyle, G. C. Gazzadi, A. Giglia, P. Finetti, N. Mahne, L. Pasquali, M. Pedio, G. Selvaggi, G. Naletto, M. G. Pelizzo, and G. Tondello, "The BEAR beamline at ELETTRA," AIP Conf. Proc. 705, 450-453 (2004).
    [CrossRef]
  9. M.-G. Pelizzo, F. Frassetto, P. Nicolosi, A. Giglia, N. Mahne, and S. Nannarone, "Polarization and higher order content measurement of a soft-x-rays monochromatized beam with Mo/Si multi-layers," Appl. Opt. 45, 1985 (2006).
    [CrossRef] [PubMed]
  10. L. Pasquali, A. De Luisa, and S. Nannarone, "The UHV experimental chamber for optical measurements (reflectivity and absorption) and angle resolved photoemission of the BEAR beamline at ELETTRA," AIP Conf. Proc. 705, 1142-1145 (2004).
    [CrossRef]
  11. L. I. Johansson, J. W. Allen, I. Lindau, M. H. Hecht, and S. B. M. Hagstrom, "Photoemission from Yb: valence-change-induced Fano resonances," Phys. Rev. B 21, 1408-1411 (1980).
    [CrossRef]
  12. F. Biggs and R. Lighthill, "Analytical approximations for x-ray cross sections," Part II, SC-RR-710507, Sandia Laboratories, Albuquerque, New Mexico, 1971, as cited by B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, At. Data Nucl. Data Tables 27, 1-144 (1982).
    [CrossRef]
  13. E. Idczak and K. Zukowska, "Optical properties and microcharacteristics of thermally evaporated ytterbium films," Thin Solid Films 75, 139-142 (1981).
    [CrossRef]
  14. W. E. Müller, "Optical properties of divalent rare-earthmetals and alkaline-earth metals," Phys. Lett. 17, 82-83 (1965).
    [CrossRef]
  15. J. P. Pétrakian, "Conductivité at transitions optiques dans des couches minces d'ytterbium," Thin Solid Films 20, 297-305 (1974).
    [CrossRef]
  16. R. Chander and R. Kumar, "Optical absorption in vacuum-evaporated ytterbium films," Phys. Status Solidi A 20, 739-744 (1973).
    [CrossRef]
  17. C. T. Chantler, K. Olsen, R. A. Dragoset, J. Chang, A. R. Kishore, S. A. Kotochigova, and D. S. Zucker, "X-ray form factor, attenuation and scattering tables" (version 2.1), (2005). [Online] Available: http://physics.nist.gov/ffast [2006, May 29]. National Institute of Standards and Technology, Gaithersburg, MD. [Originally published as C. T. Chantler, J. Phys. Chem. Ref. Data 29, 597-1048 (2000); and C. T. Chantler, J. Phys. Chem. Ref. Data 24, 71-643 (1995)].
    [CrossRef]
  18. E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, "Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminium," Phys. Rev. B 22, 1612-1628 (1980).
    [CrossRef]
  19. L. Kissel and R. H. Pratt, "Corrections to tabulated anomalous-scattering factors," Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 46, 170-175 (1990).
    [CrossRef]
  20. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of Photoelectron Spectroscopy (Eden Prairie, 1979).
  21. D. A. Shirley, "High resolution X-ray photoemission spectrum of the valence band of gold," Phys. Rev. B 5, 4709-4714 (1972).
    [CrossRef]
  22. M. E. Davila, S. L. Molodtov, C. Laubschat, and M. C. Asensio, "Surface-core-level shift photoelectron diffraction of Yb(111) films grown on W(110)," Surf. Interface Anal. 33, 595-600 (2002).
    [CrossRef]

2006 (2)

2004 (2)

S. Nannarone, F. Borgatti, A. De Luisa, B. P. Doyle, G. C. Gazzadi, A. Giglia, P. Finetti, N. Mahne, L. Pasquali, M. Pedio, G. Selvaggi, G. Naletto, M. G. Pelizzo, and G. Tondello, "The BEAR beamline at ELETTRA," AIP Conf. Proc. 705, 450-453 (2004).
[CrossRef]

L. Pasquali, A. De Luisa, and S. Nannarone, "The UHV experimental chamber for optical measurements (reflectivity and absorption) and angle resolved photoemission of the BEAR beamline at ELETTRA," AIP Conf. Proc. 705, 1142-1145 (2004).
[CrossRef]

2003 (1)

2002 (1)

M. E. Davila, S. L. Molodtov, C. Laubschat, and M. C. Asensio, "Surface-core-level shift photoelectron diffraction of Yb(111) films grown on W(110)," Surf. Interface Anal. 33, 595-600 (2002).
[CrossRef]

2000 (1)

R. Verucchi and S. Nannarone, "Triode electron bombardment evaporation source for ultrahigh vacuum thin film deposition," Rev. Sci. Instrum. 71, 3444-3450 (2000).
[CrossRef]

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, "X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92," At. Data Nucl. Data Tables 54, 181-342 (1993).
[CrossRef]

1990 (1)

L. Kissel and R. H. Pratt, "Corrections to tabulated anomalous-scattering factors," Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 46, 170-175 (1990).
[CrossRef]

1982 (1)

F. Biggs and R. Lighthill, "Analytical approximations for x-ray cross sections," Part II, SC-RR-710507, Sandia Laboratories, Albuquerque, New Mexico, 1971, as cited by B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

1981 (1)

E. Idczak and K. Zukowska, "Optical properties and microcharacteristics of thermally evaporated ytterbium films," Thin Solid Films 75, 139-142 (1981).
[CrossRef]

1980 (2)

L. I. Johansson, J. W. Allen, I. Lindau, M. H. Hecht, and S. B. M. Hagstrom, "Photoemission from Yb: valence-change-induced Fano resonances," Phys. Rev. B 21, 1408-1411 (1980).
[CrossRef]

E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, "Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminium," Phys. Rev. B 22, 1612-1628 (1980).
[CrossRef]

1974 (1)

J. P. Pétrakian, "Conductivité at transitions optiques dans des couches minces d'ytterbium," Thin Solid Films 20, 297-305 (1974).
[CrossRef]

1973 (2)

R. Chander and R. Kumar, "Optical absorption in vacuum-evaporated ytterbium films," Phys. Status Solidi A 20, 739-744 (1973).
[CrossRef]

S. A. Gribovskii and T. M. Zimkina, "Absorption coefficients of rare-earth elements of the lanthanum group in the ultrasoft x-ray region," Opt. Spectrosc. 35, 104-105 (1973).

1972 (1)

D. A. Shirley, "High resolution X-ray photoemission spectrum of the valence band of gold," Phys. Rev. B 5, 4709-4714 (1972).
[CrossRef]

1970 (1)

J. G. Endriz and W. E. Spicer, "Reflectance studies of Ba, Sr, Eu, and Yb," Phys. Rev. B 2, 1466-1492 (1970).
[CrossRef]

1965 (1)

W. E. Müller, "Optical properties of divalent rare-earthmetals and alkaline-earth metals," Phys. Lett. 17, 82-83 (1965).
[CrossRef]

Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. (1)

L. Kissel and R. H. Pratt, "Corrections to tabulated anomalous-scattering factors," Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 46, 170-175 (1990).
[CrossRef]

AIP Conf. Proc. (2)

S. Nannarone, F. Borgatti, A. De Luisa, B. P. Doyle, G. C. Gazzadi, A. Giglia, P. Finetti, N. Mahne, L. Pasquali, M. Pedio, G. Selvaggi, G. Naletto, M. G. Pelizzo, and G. Tondello, "The BEAR beamline at ELETTRA," AIP Conf. Proc. 705, 450-453 (2004).
[CrossRef]

L. Pasquali, A. De Luisa, and S. Nannarone, "The UHV experimental chamber for optical measurements (reflectivity and absorption) and angle resolved photoemission of the BEAR beamline at ELETTRA," AIP Conf. Proc. 705, 1142-1145 (2004).
[CrossRef]

Appl. Opt. (2)

At. Data Nucl. Data Tables (2)

F. Biggs and R. Lighthill, "Analytical approximations for x-ray cross sections," Part II, SC-RR-710507, Sandia Laboratories, Albuquerque, New Mexico, 1971, as cited by B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

B. L. Henke, E. M. Gullikson, and J. C. Davis, "X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92," At. Data Nucl. Data Tables 54, 181-342 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Spectrosc. (1)

S. A. Gribovskii and T. M. Zimkina, "Absorption coefficients of rare-earth elements of the lanthanum group in the ultrasoft x-ray region," Opt. Spectrosc. 35, 104-105 (1973).

Phys. Lett. (1)

W. E. Müller, "Optical properties of divalent rare-earthmetals and alkaline-earth metals," Phys. Lett. 17, 82-83 (1965).
[CrossRef]

Phys. Rev. B (4)

J. G. Endriz and W. E. Spicer, "Reflectance studies of Ba, Sr, Eu, and Yb," Phys. Rev. B 2, 1466-1492 (1970).
[CrossRef]

E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, "Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminium," Phys. Rev. B 22, 1612-1628 (1980).
[CrossRef]

L. I. Johansson, J. W. Allen, I. Lindau, M. H. Hecht, and S. B. M. Hagstrom, "Photoemission from Yb: valence-change-induced Fano resonances," Phys. Rev. B 21, 1408-1411 (1980).
[CrossRef]

D. A. Shirley, "High resolution X-ray photoemission spectrum of the valence band of gold," Phys. Rev. B 5, 4709-4714 (1972).
[CrossRef]

Phys. Status Solidi A (1)

R. Chander and R. Kumar, "Optical absorption in vacuum-evaporated ytterbium films," Phys. Status Solidi A 20, 739-744 (1973).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Verucchi and S. Nannarone, "Triode electron bombardment evaporation source for ultrahigh vacuum thin film deposition," Rev. Sci. Instrum. 71, 3444-3450 (2000).
[CrossRef]

Surf. Interface Anal. (1)

M. E. Davila, S. L. Molodtov, C. Laubschat, and M. C. Asensio, "Surface-core-level shift photoelectron diffraction of Yb(111) films grown on W(110)," Surf. Interface Anal. 33, 595-600 (2002).
[CrossRef]

Thin Solid Films (2)

E. Idczak and K. Zukowska, "Optical properties and microcharacteristics of thermally evaporated ytterbium films," Thin Solid Films 75, 139-142 (1981).
[CrossRef]

J. P. Pétrakian, "Conductivité at transitions optiques dans des couches minces d'ytterbium," Thin Solid Films 20, 297-305 (1974).
[CrossRef]

Other (3)

C. T. Chantler, K. Olsen, R. A. Dragoset, J. Chang, A. R. Kishore, S. A. Kotochigova, and D. S. Zucker, "X-ray form factor, attenuation and scattering tables" (version 2.1), (2005). [Online] Available: http://physics.nist.gov/ffast [2006, May 29]. National Institute of Standards and Technology, Gaithersburg, MD. [Originally published as C. T. Chantler, J. Phys. Chem. Ref. Data 29, 597-1048 (2000); and C. T. Chantler, J. Phys. Chem. Ref. Data 24, 71-643 (1995)].
[CrossRef]

C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of Photoelectron Spectroscopy (Eden Prairie, 1979).

http://www-cxro.lbl.gov/opticallowbarconstants/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Transmittance of five Yb films with various thicknesses normalized to the transmittance of the substrate versus the logarithm of photon energy.

Fig. 2
Fig. 2

Transmittance of two current Yb films (curves without symbols) normalized to the transmittance of the substrate along with the transmittance of Yb films of close thicknesses taken from [2] (curves with symbols).

Fig. 3
Fig. 3

Logarithm of transmittance as a function of the film thickness at five different energies (symbols) and their fit with an exponential function (lines).

Fig. 4
Fig. 4

Log–log plot of the extinction coefficient of Yb as a function of photon energy. Literature data are also represented: Gribovskii et al. [3] in the 70 500 eV range and Henke et al. [6] in the 30 1700 eV range.

Fig. 5
Fig. 5

Extinction coefficient of Yb as a function of photon energy at O 2 , 3 edge and at the low absorption band below it. Literature data are also represented: Endriz and Spicer [1] and Larruquert et al. [2].

Fig. 6
Fig. 6

Extinction coefficient of Yb versus photon energy at M 4 , 5 edge. Henke’s data [6] are also represented.

Fig. 7
Fig. 7

Sets of k data that map a wide spectral range from the FIR to the γ rays using the current data along with the data of Endriz and Spicer [1], Larruquert et al. [2], Henke et al. [6], and Chantler et al. [17], and extrapolations in the two extremes.

Fig. 8
Fig. 8

Log–log plot of the refractive index of Yb as a function of photon energy. The data of Henke et al. [6] in the 30 1700 eV range are also represented.

Fig. 9
Fig. 9

δ = 1 n of Yb as a function of photon energy at O 2 , 3 edge and at the low absorption band below it. Literature data are also represented: Endriz and Spicer [1], Larruquert et al. [2], and Henke et al. [6].

Fig. 10
Fig. 10

δ = 1 n of Yb versus the photon energy at the M 4 , 5 edge. Henke’s data [6] are also represented.

Fig. 11
Fig. 11

Photemission measurements on three different films obtained at 650 eV . The electron analyzer was placed in normal emission.

Fig. 12
Fig. 12

Valence band photoemission spectra for three different Yb films, aligned at the Fermi level. The measurements were performed with the electron analyzer in normal emission and with a photon energy of 150 eV .

Tables (1)

Tables Icon

Table 1 Coefficients of Polynomial Fits of k and δ versus Energy in the 48–190 and 210 1470 eV Ranges

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T = ( I T I B ) ( R T R B ) ( I D I B ) ( R D R B ) ,
T f s T s exp ( 4 π k x λ ) ,
n ( E ) 1 = 2 π P 0 E k ( E ) E 2 E 2 d E ,
0 E k ( E ) d E = π 4 N el e 2 h 2 ε 0 m ,
n eff ( E ) = 4 ε 0 m π N at e 2 h 2 0 E E k ( E ) d E ,
Z * = Z ( Z 82.5 ) 2.37 ,
0 [ n ( E ) 1 ] d E = 0 ,
ζ = 0 [ n ( E ) 1 ] d E 0 n ( E ) 1 d E .
d = ( R σ Yb N Λ Yb N T Yb N ρ Yb A Yb 4 d ) ( c O σ O K T O K ρ Yb 2 O 3 c O A O + c Yb A Yb ) + ( R σ Yb N ρ Yb A Yb ) ,

Metrics