Abstract

A silver–dielectric–silver structure that supports both waveguide modes and surface plasmon polaritons is explored. The upper interface between the dielectric and the silver is periodically corrugated to allow coupling of visible photons to both types of mode. Such a metallic microcavity leads to plasmonic and waveguide self-interacting bandgaps at Brillouin zone boundaries. In addition there are found other bandgaps from mode crossings within the Brillouin zone. This results specifically in a very flat photonic band due to anticrossings between a surface plasmon polariton and waveguide modes. Characterization of the observed modes in terms of their resonant electromagnetic fields is achieved by using a multilayer, multishape differential grating theory.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, 'Highly efficient light-emitting diodes with microcavities,' Science 265, 943-945 (1994).
    [CrossRef] [PubMed]
  2. L. H. Smith, J. A. E. Wasey, and W. L. Barnes, 'Light outcoupling efficiency of top-emitting organic light-emitting diodes,' Appl. Phys. Lett. 84, 2986-2988 (2004).
    [CrossRef]
  3. C. L. Lin, H. W. Lin, and C. C. Wu, 'Examining microcavity organic light-emitting devices having two metal mirrors,' Appl. Phys. Lett. 87, 0211011 (2005).
    [CrossRef]
  4. A. Chin and T. Y. Chang, 'Enhancement of quantum efficiency in thin photodiodes through absorptive resonance,' J. Lightwave Technol. 9, 321-328 (1991).
    [CrossRef]
  5. R. J. Simes, R. H. Yan, R. S. Geels, L. A. Coldren, J. H. English, A. C. Gossard, and D. G. Lishan, 'Electrically tunable Fabry-Perot mirror using multiple quantum well index modulation,' Appl. Phys. Lett. 53, 637-639 (1988).
    [CrossRef]
  6. H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, 'Omnidirectional resonance in a metal-dielectric-metal geometry,' Appl. Phys. Lett. 84, 4421-4423 (2004).
    [CrossRef]
  7. A. Hosseini and Y. Massoud, 'Optical range microcavities and filters using multiple dielectric layers in metal-insulator-metal structures,' J. Opt. Soc. Am. A 24, 221-224 (2007).
    [CrossRef]
  8. M. Lipson and L. C. Kimerling, 'Er3+ in strong light-confining microcavity,' Appl. Phys. Lett. 77, 1150-1152 (2000).
    [CrossRef]
  9. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  10. P. K. Tien, 'Integrated optics and new wave phenomena in optical waveguides,' Rev. Mod. Phys. 49, 361-420 (1977).
    [CrossRef]
  11. J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, 'Bragg scattering from periodically microstructured light emitting diodes,' Appl. Phys. Lett. 77, 3340-3342 (2000).
    [CrossRef]
  12. R. K. Lee, O. J. Painter, B. D'Urso, A. Scherer, and A. Yariv, 'Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,' Appl. Phys. Lett. 74, 1522-1524 (1999).
    [CrossRef]
  13. M. G. Salt and W. L. Barnes, 'Photonic band gaps in guided modes of textured metallic microcavities,' Opt. Commun. 166, 151-162 (1999).
    [CrossRef]
  14. I. Abram and G. Bourdon, 'Photonic-well microcavities for spontaneous emission control,' Phys. Rev. A 54, 3476-3479 (1996).
    [CrossRef] [PubMed]
  15. W. L. Barnes, 'Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,' J. Lightwave Technol. 17, 2170-2182 (1999).
    [CrossRef]
  16. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, 'The photonic band-edge laser-a new approach to gain enhancement,' J. Appl. Phys. 75, 1896-1899 (1994).
    [CrossRef]
  17. S. C. Kitson, W. L. Barnes, and J. R. Sambles, 'Photonic band gaps in metallic microcavities,' J. Appl. Phys. 84, 2399-2403 (1998).
    [CrossRef]
  18. M. G. Salt and W. L. Barnes, 'Flat photonic bands in guided modes of textured metallic microcavities,' Phys. Rev. B 61, 11125-11135 (2000).
    [CrossRef]
  19. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, 'Multicoated gratings--a differential formalism applicable in the entire optical region,' J. Opt. Soc. Am. 72, 839-846 (1982).
    [CrossRef]
  20. E. L. Wood, J. R. Sambles, N. P. Cotter, and S. C. Kitson, 'Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons,' J. Mod. Opt. 42, 1343-1349 (1995).
    [CrossRef]
  21. R. A. Watts, T. W. Preist, and J. R. Sambles, 'Sharp surface-plasmon resonances on deep diffraction gratings,' Phys. Rev. Lett. 79, 3978-3981 (1997).
    [CrossRef]
  22. epsisilver(ω)=−255.3185+198.63ω−60.794ω2+8.381ω3−0.43004ω4+i(82.2575−132.79ω+90.474ω2−32.88ω3+6.659ω4−0.70893ω5+0.030913ω6), and epsiresist(ω)=−2.35348+5.7749ω−2.5344ω2+0.53253ω3−0.052274ω4+0.0018284ω5+i(0.01319−8.7131×10−16ω−1.1024×10−3ω2−1.6659×10−24ω3+9.663×10−5ω4−1.4567×10−18ω5), where ω=(2πc/λ)×10−15s−1.
  23. R. A. Watts and J. R. Sambles, 'Reflection gratings as polarization converters,' Opt. Commun. 140, 179-183 (1997).
    [CrossRef]

2007 (1)

2005 (1)

C. L. Lin, H. W. Lin, and C. C. Wu, 'Examining microcavity organic light-emitting devices having two metal mirrors,' Appl. Phys. Lett. 87, 0211011 (2005).
[CrossRef]

2004 (2)

L. H. Smith, J. A. E. Wasey, and W. L. Barnes, 'Light outcoupling efficiency of top-emitting organic light-emitting diodes,' Appl. Phys. Lett. 84, 2986-2988 (2004).
[CrossRef]

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, 'Omnidirectional resonance in a metal-dielectric-metal geometry,' Appl. Phys. Lett. 84, 4421-4423 (2004).
[CrossRef]

2000 (3)

M. Lipson and L. C. Kimerling, 'Er3+ in strong light-confining microcavity,' Appl. Phys. Lett. 77, 1150-1152 (2000).
[CrossRef]

M. G. Salt and W. L. Barnes, 'Flat photonic bands in guided modes of textured metallic microcavities,' Phys. Rev. B 61, 11125-11135 (2000).
[CrossRef]

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, 'Bragg scattering from periodically microstructured light emitting diodes,' Appl. Phys. Lett. 77, 3340-3342 (2000).
[CrossRef]

1999 (3)

R. K. Lee, O. J. Painter, B. D'Urso, A. Scherer, and A. Yariv, 'Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,' Appl. Phys. Lett. 74, 1522-1524 (1999).
[CrossRef]

M. G. Salt and W. L. Barnes, 'Photonic band gaps in guided modes of textured metallic microcavities,' Opt. Commun. 166, 151-162 (1999).
[CrossRef]

W. L. Barnes, 'Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,' J. Lightwave Technol. 17, 2170-2182 (1999).
[CrossRef]

1998 (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, 'Photonic band gaps in metallic microcavities,' J. Appl. Phys. 84, 2399-2403 (1998).
[CrossRef]

1997 (2)

R. A. Watts, T. W. Preist, and J. R. Sambles, 'Sharp surface-plasmon resonances on deep diffraction gratings,' Phys. Rev. Lett. 79, 3978-3981 (1997).
[CrossRef]

R. A. Watts and J. R. Sambles, 'Reflection gratings as polarization converters,' Opt. Commun. 140, 179-183 (1997).
[CrossRef]

1996 (1)

I. Abram and G. Bourdon, 'Photonic-well microcavities for spontaneous emission control,' Phys. Rev. A 54, 3476-3479 (1996).
[CrossRef] [PubMed]

1995 (1)

E. L. Wood, J. R. Sambles, N. P. Cotter, and S. C. Kitson, 'Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons,' J. Mod. Opt. 42, 1343-1349 (1995).
[CrossRef]

1994 (2)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, 'The photonic band-edge laser-a new approach to gain enhancement,' J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, 'Highly efficient light-emitting diodes with microcavities,' Science 265, 943-945 (1994).
[CrossRef] [PubMed]

1991 (1)

A. Chin and T. Y. Chang, 'Enhancement of quantum efficiency in thin photodiodes through absorptive resonance,' J. Lightwave Technol. 9, 321-328 (1991).
[CrossRef]

1988 (1)

R. J. Simes, R. H. Yan, R. S. Geels, L. A. Coldren, J. H. English, A. C. Gossard, and D. G. Lishan, 'Electrically tunable Fabry-Perot mirror using multiple quantum well index modulation,' Appl. Phys. Lett. 53, 637-639 (1988).
[CrossRef]

1982 (1)

1977 (1)

P. K. Tien, 'Integrated optics and new wave phenomena in optical waveguides,' Rev. Mod. Phys. 49, 361-420 (1977).
[CrossRef]

Appl. Phys. Lett. (7)

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, 'Bragg scattering from periodically microstructured light emitting diodes,' Appl. Phys. Lett. 77, 3340-3342 (2000).
[CrossRef]

R. K. Lee, O. J. Painter, B. D'Urso, A. Scherer, and A. Yariv, 'Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,' Appl. Phys. Lett. 74, 1522-1524 (1999).
[CrossRef]

M. Lipson and L. C. Kimerling, 'Er3+ in strong light-confining microcavity,' Appl. Phys. Lett. 77, 1150-1152 (2000).
[CrossRef]

L. H. Smith, J. A. E. Wasey, and W. L. Barnes, 'Light outcoupling efficiency of top-emitting organic light-emitting diodes,' Appl. Phys. Lett. 84, 2986-2988 (2004).
[CrossRef]

C. L. Lin, H. W. Lin, and C. C. Wu, 'Examining microcavity organic light-emitting devices having two metal mirrors,' Appl. Phys. Lett. 87, 0211011 (2005).
[CrossRef]

R. J. Simes, R. H. Yan, R. S. Geels, L. A. Coldren, J. H. English, A. C. Gossard, and D. G. Lishan, 'Electrically tunable Fabry-Perot mirror using multiple quantum well index modulation,' Appl. Phys. Lett. 53, 637-639 (1988).
[CrossRef]

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, 'Omnidirectional resonance in a metal-dielectric-metal geometry,' Appl. Phys. Lett. 84, 4421-4423 (2004).
[CrossRef]

J. Appl. Phys. (2)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, 'The photonic band-edge laser-a new approach to gain enhancement,' J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, 'Photonic band gaps in metallic microcavities,' J. Appl. Phys. 84, 2399-2403 (1998).
[CrossRef]

J. Lightwave Technol. (2)

A. Chin and T. Y. Chang, 'Enhancement of quantum efficiency in thin photodiodes through absorptive resonance,' J. Lightwave Technol. 9, 321-328 (1991).
[CrossRef]

W. L. Barnes, 'Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,' J. Lightwave Technol. 17, 2170-2182 (1999).
[CrossRef]

J. Mod. Opt. (1)

E. L. Wood, J. R. Sambles, N. P. Cotter, and S. C. Kitson, 'Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons,' J. Mod. Opt. 42, 1343-1349 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

R. A. Watts and J. R. Sambles, 'Reflection gratings as polarization converters,' Opt. Commun. 140, 179-183 (1997).
[CrossRef]

M. G. Salt and W. L. Barnes, 'Photonic band gaps in guided modes of textured metallic microcavities,' Opt. Commun. 166, 151-162 (1999).
[CrossRef]

Phys. Rev. A (1)

I. Abram and G. Bourdon, 'Photonic-well microcavities for spontaneous emission control,' Phys. Rev. A 54, 3476-3479 (1996).
[CrossRef] [PubMed]

Phys. Rev. B (1)

M. G. Salt and W. L. Barnes, 'Flat photonic bands in guided modes of textured metallic microcavities,' Phys. Rev. B 61, 11125-11135 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

R. A. Watts, T. W. Preist, and J. R. Sambles, 'Sharp surface-plasmon resonances on deep diffraction gratings,' Phys. Rev. Lett. 79, 3978-3981 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

P. K. Tien, 'Integrated optics and new wave phenomena in optical waveguides,' Rev. Mod. Phys. 49, 361-420 (1977).
[CrossRef]

Science (1)

E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, 'Highly efficient light-emitting diodes with microcavities,' Science 265, 943-945 (1994).
[CrossRef] [PubMed]

Other (2)

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

epsisilver(ω)=−255.3185+198.63ω−60.794ω2+8.381ω3−0.43004ω4+i(82.2575−132.79ω+90.474ω2−32.88ω3+6.659ω4−0.70893ω5+0.030913ω6), and epsiresist(ω)=−2.35348+5.7749ω−2.5344ω2+0.53253ω3−0.052274ω4+0.0018284ω5+i(0.01319−8.7131×10−16ω−1.1024×10−3ω2−1.6659×10−24ω3+9.663×10−5ω4−1.4567×10−18ω5), where ω=(2πc/λ)×10−15s−1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustrating the sample, the coordinate system, and the experimental geometry used in this paper. Here a is the grating amplitude, d is the thickness of the silver tunnel barrier, θ is the polar angle, φ is the azimuthal angle, and t is the average thickness of the photoresist layer. The silica substrate is optically attached to the silica prism with matching fluid. Note that in our experiments to acquire the correct different azimuth angles ( φ ) the sample is rotated, not the prism.

Fig. 2
Fig. 2

Results of the wavelength-dependent reflectivity for TM polarization at angles (a) θ = 55.2 ° , φ = 0 ° , and (b) θ = 58.6 ° , φ = 90 ° , and for TE polarization at angles (c) θ = 25.0 ° , φ = 0 ° , and (b) θ = 34.8 ° , φ = 90 ° . The solid curves on each of the graphs correspond to the experimental data. The black open squares are theoretically modeled results.

Fig. 3
Fig. 3

Theoretical TE reflectivity for (a) φ = 0 ° and (c) φ = 90 ° , and TM reflectivity for (b) φ = 0 ° and (d) φ = 90 ° as a function of frequency and in-plane wave vector. The open black squares are the mapped reflection dips that are taken from the experimental reflectivity spectra. The dashed line indicates the silica light line. The dotted line in the upper two diagrams represents the first-order diffracted silica light line. The white triangular region in the bottom right corner indicates the inaccessible region beyond the silica light line.

Fig. 4
Fig. 4

Theoretical band structure for the waveguide structure at φ = 0 ° . The unscattered modes can be identified as (i) SPP mode that is supported by silver/photoresist interface, (ii) SPP mode that propagates at the silver/silica interface, (iii) TM 1 waveguide mode, (iv) TE 1 guide mode, and (vi) TE 2 mode, respectively. Note the flat character of mode (v). The dotted line represents the light line in silica.

Fig. 5
Fig. 5

Time-averaged E z profiles for TE polarization φ = 0 ° at (a) f = 0.6545 × 10 15 Hz and θ = 38.2 ° , (b) f = 0.6125 × 10 15 Hz and θ = 41.6 ° . The top white solid line represents the silica/silver interface; the middle one represents the silver/resist plane interface and the bottom, corrugated, curve represents the silver/resist interface.

Fig. 6
Fig. 6

Time-averaged E x and E z profiles for TE 2 guided modes at θ = 0 ° . (a) E x profile in the planar structure at f = 0.514 × 10 15 Hz , φ = 90 ° , (b) E z profile in the planar structure at f = 0.514 × 10 15 Hz , φ = 0 ° , (c) E x profile in the microcavity structure with corrugations at f = 0.4295 × 10 15 Hz , φ = 90 ° , and (d) E z profile in the microcavity structure with corrugations at f = 0.5245 × 10 15 Hz , φ = 0 ° . The thickness of the upper silver layer and resist waveguide medium are 56.8 and 300.8 nm , respectively, for the planar structure.

Fig. 7
Fig. 7

Theoretical band predictions for the waveguide structure at φ = 0 ° , with a sinusoidal grating of amplitude (a) 5, (b) 15, (c) 30, and (d) 40 nm . The modes in (a) can be identified as (i) unscattered SPP at the silver/resist interface, (ii) unscattered SPP at the silver/silica interface, (iii) unscattered TM 1 guided mode, (iv) unscattered TM 2 guided mode, (v) scattered SPP at the silver/resist interface ( + k g ) , (vi) scattered TM 1 guided mode ( + k g ) , (vii) scattered SPP at the silver/silica interface ( + k g ) , and (viii) scattered TM 2 guided mode ( + k g ) . The dashed line box in each plot indicates the anticrossing caused by the mode iv (unscattered TM 2 guided mode) interfering with both the mode vi (scattered TM 1 mode) and mode v (scattered SPP mode).

Fig. 8
Fig. 8

Time-averaged H z profile for the mode at φ = 0 ° with a resonant frequency f = 0.4295 × 10 15 Hz and polar angle θ = 4.9 ° .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

y 1 ( x ) = d + t , y 2 ( x ) = t , y 3 ( x ) = a 0 sin ( k g x + ϕ 0 ) + + a N sin ( ( N + 1 ) k g x + ϕ N ) + ,

Metrics