Abstract

Based on two-dimensional photonic crystals with a triangular lattice, a channel drop filter with a wavelength-selective reflection microcavity is designed. In the structure, two microcavities are used. One is used for a resonant tunneling-based channel drop operation. The other is used to realize wavelength-selective reflection feedback in the bus waveguide. The phase term, which is derived by means of coupled-mode theory to achieve close to 100% drop efficiency, is satisfied by modifying the sizes of the border air holes next to the bus waveguide section between the two cavities. Using the finite-difference time-domain method, the simulation results show complete power transfer between the bus and drop waveguides via the system.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sharkawy, S. Shi, and D. W. Prather, "Multichannel wavelength division multiplexing using photonic crystals," Appl. Opt. 40, 2247-2252 (2001).
    [CrossRef]
  2. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
    [CrossRef]
  3. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. , 35, 1322-1331 (1999).
    [CrossRef]
  4. T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, "Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
    [CrossRef]
  5. A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, "Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide," Opt. Express 13, 4202-4209 (2005).
    [CrossRef] [PubMed]
  6. H. Takano, B.-S. Song, T. Asano, and S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal," Opt. Express 14, 3491-3496 (2006).
    [CrossRef] [PubMed]
  7. A. Gomyo, J. Ushida, and M. Shirane, "Highly drop-efficient channel-drop optical filters with Si-based photonic crystal slabs," Thin Solid Films 508, 422-425 (2006).
    [CrossRef]
  8. S. Kim, I. Park, H. Lim, and C.-S. Kee, "Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback," Opt. Express 12, 5518-5525 (2004).
    [CrossRef] [PubMed]
  9. Z. Zhang and M. Qiu, "Coupled-mode analysis of a resonant channel drop filter using waveguides with mirror boundaries," J. Opt. Soc. Am. B 23, 104-113 (2006).
    [CrossRef]
  10. Hongliang Ren, Chun Jiang, Weisheng Hu, Mingyi Gao, and Jingyuan Wang, "Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity," Opt. Express 14, 2446-2458 (2006).
    [CrossRef] [PubMed]
  11. T. White, C. de Sterke, R. McPhedran, T. Huang, and L. Botten, "Recirculation-enhanced switching in photonic crystal Mach-Zehnder interferometers," Opt. Express 12, 3035-3045 (2004).
    [CrossRef] [PubMed]
  12. T. Fujisawa and M. Koshiba, "Finite-element modeling of nonlinear Mach-Zehnder interferometers based on photonic-crystal waveguides for all-optical signal processing," J. Lightwave Technol. , 24, 617-623 (2006).
    [CrossRef]

2006 (6)

2005 (1)

2004 (2)

2001 (1)

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. , 35, 1322-1331 (1999).
[CrossRef]

1998 (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Asano, T.

Borel, P. I.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, "Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
[CrossRef]

Botten, L.

de Sterke, C.

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. , 35, 1322-1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Frandsen, L. H.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, "Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
[CrossRef]

Fujisawa, T.

Gao, Mingyi

Gomyo, A.

A. Gomyo, J. Ushida, and M. Shirane, "Highly drop-efficient channel-drop optical filters with Si-based photonic crystal slabs," Thin Solid Films 508, 422-425 (2006).
[CrossRef]

Harpoth, A.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, "Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
[CrossRef]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. , 35, 1322-1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Hede, K. K.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, "Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
[CrossRef]

Hu, Weisheng

Huang, T.

Jiang, Chun

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. , 35, 1322-1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Kee, C.-S.

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. , 35, 1322-1331 (1999).
[CrossRef]

Kim, S.

Koshiba, M.

Kristensen, M.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, "Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
[CrossRef]

Kuramochi, E.

Lim, H.

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. , 35, 1322-1331 (1999).
[CrossRef]

McPhedran, R.

Mitsugi, S.

Niemi, T.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, "Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
[CrossRef]

Noda, S.

Notomi, M.

Park, I.

Prather, D. W.

Qiu, M.

Ren, Hongliang

Sharkawy, A.

Shi, S.

Shinya, A.

Shirane, M.

A. Gomyo, J. Ushida, and M. Shirane, "Highly drop-efficient channel-drop optical filters with Si-based photonic crystal slabs," Thin Solid Films 508, 422-425 (2006).
[CrossRef]

Song, B.-S.

Takano, H.

Ushida, J.

A. Gomyo, J. Ushida, and M. Shirane, "Highly drop-efficient channel-drop optical filters with Si-based photonic crystal slabs," Thin Solid Films 508, 422-425 (2006).
[CrossRef]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. , 35, 1322-1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Wang, Jingyuan

White, T.

Zhang, Z.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. , 35, 1322-1331 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, "Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Phys. Rev. Lett. (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Thin Solid Films (1)

A. Gomyo, J. Ushida, and M. Shirane, "Highly drop-efficient channel-drop optical filters with Si-based photonic crystal slabs," Thin Solid Films 508, 422-425 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Three-port channel drop filter with a wavelength-selective reflection cavity. The cavity a is used to realize the wavelength-selective reflection function, and the other cavity b is used as a resonant tunneling-based channel drop operation. In the bus waveguide section between two cavities, the waveguide propagation constant is changed to meet the phase term, where its length is L φ .

Fig. 2
Fig. 2

Drop efficiency versus k and φ with the assumptions 100% reflection feedback at (a) ω = ω 0 a = ω 0 b and (b) ω = ω 0 a = ( 1 sin φ 2 Q 1 ) ω 0 b based on the desired 2D PCs.

Fig. 3
Fig. 3

(a) Three-port system realized in 2D PCs’ with triangular lattice. The modified border air holes are indicated by the white circles, the drop guide is rotated 60° in this Γ K direction. (b) Shift of PBG mode for different radii of border holes. (c) Intensity spectra calculated by the FDTD method. (d) H z field distribution at φ = 17.31296 π . (e) H z field distribution at φ = 17.31296 π , the drop guide being rotated 120° in this Γ K direction. (f) H z field distribution at φ = 16.31296 π .

Fig. 4
Fig. 4

Intensity spectra calculated by the FDTD method. The radius of the defect air holes of two cavities is equal to 0.53 a , and the distance between two cavities is 11 a .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

η = 4 k ( 1 cos φ ) k 2 + 2 k ( 1 cos φ ) + 2 ( 1 cos φ )
k = Q 1 Q 2 ,
φ = 2 β L .
ω = ω 0 a = ( 1 sin φ 2 Q 1 ) ω 0 b ,
η = 4 k ( 1 cos φ ) k 2 + ( 1 cos φ ) 2 + 2 k ( 1 cos φ ) .
k = 1 cos φ
[ 2 Q 1 ( 1 ω 0 a ω 0 b ) ] 2 + ( 1 k ) 2 = 1
φ = 2 β ( L L φ ) + 2 β L φ ,

Metrics